



## Multicore Performance Analysis at Scale: From two Embedded Cores to one Million HPC Cores

Bernd Mohr Jülich Supercomputing Centre, Germany



#### Forschungszentrum Jülich

# JÜLICH SUPERCOMPUTING CENTRE

### Forschungszentrum Jülich GmbH





- Germany's largest national laboratory
- About 5600 employees
- Research areas
  - Information technology
  - Health (Neuroscience / brain research)
  - Energy and environment

### Jülich Supercomputing Centre (JSC)





#### **HPC Centre for**

- Forschungszentrum Jülich
- Jülich Aachen Research Alliance (JARA)
- Germany as GCS (1 of 3 German National Centres)
- Europe (1<sup>st</sup> European Centre inside PRACE)



How and Why

# MULTICORE PERFORMANCE ANALYSIS

#### **HPC Architectures: State of the Art**





#### **Performance Challenges for HPC Systems**



- HPC systems consist of
  - Complex configurations
  - With a huge number of components
    - Very likely heterogeneous
  - With never enough memory
  - Dynamically changing configuration due to fault recovery + power saving
- Deep software hierarchies of large, complex software components are needed to make use of such systems
- Sophisticated integrated performance measurement, analysis, and optimization capabilities are required to efficiently operate an HPC system

### Performance Challenges for Multicore Systems **J**Ü

- Multicore Systems | consist of
  - Complex configurations
  - With a huge number of components
    - Very likely heterogeneous
  - With never enough memory



- Dynamically changing configuration due to fault recovery + power saving
- Deep software hierarchies of large, complex software components are needed to make use of such systems
- Sophisticated integrated performance measurement, analysis, and optimization capabilities are required to efficiently operate an Multicore Systems

### **Measurement Methods: Profiling**



- Recording of aggregated information
  - Time
  - Counts
    - Calls
    - Hardware counters
- about program and system entities
  - Functions, call sites, loops, basic blocks, …
  - Processes, threads
- Statistical information
  - Min, max, mean and total number of values

#### **Measurement Methods: Tracing**



- Recording information about significant points (events) during execution of the program
  - Enter/leave a code region (function, loop, ...)
  - Send/receive a message ...
- Save information in event record
  - Timestamp, location ID, event type
  - plus event specific information
- **Event trace** := stream of event records sorted by time
- Can be used to reconstruct the dynamic behavior
   ⇒ Abstract execution model on level of defined events



#### **Event Tracing: "Timeline" Visualization**







More than numbers and diagrams

# INSIGHTFULNESS

### **Interactive Event Trace Analysis: Vampir**





#### Visual presentation of dynamic runtime behaviour

- Event timeline chart for states & interactions of processes/threads
- Communication statistics, summaries & more



http://www.vampir.eu/

### Vampir GUI (zoom)





# Interactive browsing, zooming, selecting

 Linked displays & statistics adapt to selected time interval

#### **Trace formats**

- OTF (VampirTrace)
- OTF2 (Score-P)
- EPIK (Scalasca1)

#### "A picture is worth 1000 words..."



| 10                              | 10.2 mc 10.2    | 5 - 19.693 III5 = 0<br>me 10 | 1.927 IIIS)<br>Ame | 10 G me    |             | Proces                               |
|---------------------------------|-----------------|------------------------------|--------------------|------------|-------------|--------------------------------------|
| ocess 0 683 MPI_Recv            | 5 15.21         | 115 15                       | .4 1113            | 13.0 113   | MPI         | Proces<br>Proces<br>Proces           |
| ocess 1 6 80 83 MPI_Finali      | ze              |                              |                    |            | Application | Proces<br>Proces<br>Proces           |
| cess 2 6 80 83 MPI_             | Finalize        |                              |                    |            |             | Proces<br>Proces<br>Proces           |
| cess 3 6 MPI_Recv 83            | MPI_Finalize    |                              |                    |            |             | Proces<br>Proces<br>Proces           |
| cess 4 6 MPI_Recv               | 83 MPI_Finalize |                              |                    |            |             | Proces<br>Proces<br>Proces           |
| cess 5 6 MPI_Recv               | 83 MPI_Final    | lize                         |                    |            |             | Proces<br>Proces<br>Proces           |
| cess 6 6 MPI_Recv               | 83 MPI          | Finalize                     |                    |            |             | Proces<br>Proces<br>Proces<br>Proces |
| cess 7 6 MPI_Recv               | 83              | MPI_Finalize                 |                    |            |             | Proces<br>Proces<br>Proces<br>Proces |
| cess 8 6 MPI_Recv               |                 | 83 MPI_Final                 | ize                |            |             | Proces<br>Proces<br>Proces<br>Proces |
| cess 9 6 MPI_Recv               |                 | 83 MPI_                      | Finalize           |            |             | Proces<br>Proces<br>Proces           |
| cess 10 <mark>6 MPI_Recv</mark> |                 | 83                           | MPI_Finalize       |            |             | Proces<br>Proces<br>Proces           |
| cess 11 6 MPI_Recv              |                 |                              | 83 MPI_Fin         | alize      |             | Proces<br>Proces<br>Proces           |
| cess 12 6 MPI_Recv              |                 |                              | 83 MP              | I_Finalize |             | Proces<br>Proces<br>Proces           |
| cess 13 6 MPI_Recv              |                 |                              | 8:                 | B MPI_Fina | lize        | Proces<br>Proces<br>Proces           |
| cess 14 <mark>6 MPI_Recv</mark> |                 |                              |                    | 83 54      |             | Proces<br>Proces<br>Proces           |
| cess 15 6 MPI_Recv              |                 |                              |                    | 8:         | 3           | Proces<br>Proces<br>Proces<br>Proces |



• MPI ring program

"Real world" example

### "What about 1000's of pictures?" (with 100's of menu options)







#### **Example Automatic Analysis: Late Sender**





(a) Late Sender

process



ENTER

(c) Late Sender / Wrong Order

# **Example MPI Wait States**





#### Scalasca

- Scalable Analysis of Large Scale Applications
- Approach





http://www.scalasca.org/

- Instrument C, C++, and Fortran parallel applications
- Option 1: <u>scalable</u> call-path profiling
- Option 2: <u>scalable</u> event trace analysis
  - Collect event traces
  - Process trace in parallel
    - Wait-state analysis
    - Delay and root-cause analysis
    - Critical path analysis
  - Categorize and rank results



#### Late Sender Analysis

- Finds waiting at MPI\_Waitall() inside ice boundary halo update
- Shows distribution of imbalance across system and ranks







Late Sender Analysis + Application Topology

- Shows distribution of imbalance over topology
- MPI topologies are automatically captured



#### Scalasca Root Cause Analysis

#### Root-cause analysis

- Wait states typically caused by load or communication imbalances earlier in the program
- Waiting time can also propagate (e.g., indirect waiting time)
- Enhanced performance analysis to find the root cause of wait states



#### Approach

- Distinguish between direct and indirect waiting time
- Identify call path/process combinations delaying other processes and causing first order waiting time
- Identify original delay





### Direct Wait Time Analysis

 Direct wait caused by ranks processing areas near the north and south ice borders



JSC



### Indirect Wait Time Analysis

 Indirect waits occurs for ranks processing warmer areas







### Delay Costs Analysis

 Delays NOT caused on ranks processing ice!







# YOU KNOW YOU MADE IT ...

# **... IF LARGE COMPANIES "COPY" YOUR STUFF**

### Introducing the Intel<sup>®</sup> Trace Analyzer and Collector Performance Assistant

Motivation: Improve method of performance analysis via the GUI Solution:

- Define common/known performance problems
- Automate detection via the Intel® Trace Analyzer

Example: A "Late Broadcast" is not easy to identify with existing views



Source:

https://software.intel.com/en-us/videos/quickly-discover-performance-issues-with-the-intel-trace-analyzer-and-collector-90-beta

Copyright © 2014, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others.

Optimization Notice

# Which Performance Issues are automatically identified?

## Point-to-point exchange problems:

Late Sender



wait time

send

Late Receiver

Late Receiver

P1

## Problems with global collective operation performance:

Wait at Barrier



Early Reduce



Σ

Late Broadcast





#### Source:

https://software.intel.com/en-us/videos/quickly-discover-performance-issues-with-the-intel-trace-analyzer-and-collector-90-beta

Copyright © 2014, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others.

receive

time

Optimization Notice

(intel)

14



Together we are strong

# **INTEGRATION**

#### Integration



- Need integrated tool (environment) for all levels of parallelization
  - Inter-node (MPI, PGAS, SHMEM)
  - Intra-node (OpenMP, multi-threading, multi-tasking)
  - Accelerators (OpenACC, CUDA, OpenCL)
- Integration with performance modeling and prediction
- No tool fits all requirements
  - Interoperability of tools
  - Integration via open interfaces



# Scalable performance measurement infrastructure for parallel codes









Technische Universität München



UNIVERSITY OF OREGON

### **Score-P** Tool Ecosystem





February 2016

JSC

#### **Connect to Vampir Trace Browser**





#### **Show most Severe Pattern Instances**



| cube 4.1.1 livedvd2: scorep_bt-mz_B_4x4_trace/trace.cubex                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <u>F</u> ile <u>D</u> isplay <u>T</u> opology <u>H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Absolute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Absolute ~ Absolute                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Metric tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 💽 Call tree 🔲 Flat view 💽 System                                                                                                                                                                                                                                                                                                                                                                                                                                           | tree 🚺 Box Plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| <ul> <li>0.00 Time</li> <li>300.91 Execution</li> <li>0.00 MPI</li> <li>0.01 Synchronization</li> <li>0.00 Communication</li> <li>0.39 Point-to-point</li> <li>1.38 Late Sender</li> <li>0.00 Collective</li> <li>0.00 Collective</li> <li>0.00 Early Reduce</li> <li>0.00 Early Scan</li> <li>0.00 Kat Broadcast</li> <li>0.00 Na N Completion</li> <li>0.00 File I/O</li> <li>0.87 Init/Exit</li> <li>0.00 OMP</li> <li>0.00 Filush</li> <li>2.17 Management</li> <li>0.00 Synchronization</li> <li>22.99 Barrier</li> </ul> | O.00 MAIN_ Call site   O.00 mpi_set Call site   O.00 mPi_Set Call site   O.00 env_set Called region   O.00 zone_set Expand/collapse   O.00 zone_sta Cut call tree   O.00 set_cont Cut call tree   O.00 set_cont Find items   O.00 copy Clear found items   O.00 copy O.00 copy   O.00 copy O.00 copy   O.00 copy O.00 onl   O.00 onl Min/max values   O.00 onl Min/max values   O.00 onl Min/max values   O.00 onl Min/max values   O.00 onl Select "Max severity in trace | neric cluster       *         i06r01c20       -         -       MPI Rank 0         -       0.34 Thread 0         -       0.00 Thread 1         -       0.00 Thread 3         -       MPI Rank 1         -       0.00 Thread 3         -       MPI Rank 1         -       0.00 Thread 1         -       0.00 Thread 1         -       0.00 Thread 3         -       MPI Rank 2         -       0.00 Thread 1         -       0.00 Thread 1         -       0.00 Thread 3         -       MPI Rank 3         -       0.21 Thread 0         -       0.00 Thread 1         -       0.00 Thread 3 |  |  |  |  |  |
| 0.00 1.38 (0.41%) 337.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>0.00</sup> browser" from context mer                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of call paths marked with                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Shows the most severe instance of pattern in trace brows                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | red frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |

#### **Investigate most Severe Instance in Vampir**







To infinity and beyond

# **EXTREME CONCURRENCY**

#### **Typical HPC System Size**





#### **Personal Motivation**



#### JuQueen

IBM BlueGene/Q 28 racks 458,752 cores 1,835,008 HW threads

2012/2013: Most powerful machine in Europe!

Most **parallel** machine in Europe!



#### VampirServer: Trace Visualization S3D@200,448



 OTF trace 4.5 TB

 Vampir Server running with 20,000 analysis processes



JSC

#### Scalasca Trace Analysis sweep3D@294,912 BGP

JSC

- 10 min sweep3D runtime
- 11 sec analysis
- 4 min trace data write/read (576 files)
- 7.6 TB buffered trace data
- 510 billion events

B. J. N. Wylie, M. Geimer, B. Mohr, D. Böhme, Z.Szebenyi, F. Wolf: Large-scale performance analysis of Sweep3D with the Scalasca toolset. Parallel Processing Letters, 20(4):397-414, 2010.



February 2016

ÜLICH

### **Performance Tool Scaling: Scalasca**



- Latest full application test case
  - Granular Dynamics Simulation
  - Based on Physics Engine (PE) Framework (Erlangen), MPI only
  - PRACE @ ISC Award winner
- Scalasca 1.x experiments on JUQUEEN
  - Full machine experiment: 28,672 nodes x 32 MPI ranks
    - 917,504 processes [Limit: Memory / System metadata]
  - Largest number of threads: 20,480 nodes x 64 MPI ranks
    - 1,310,720 processes
      [Limit: Memory / System metadata]
- Scalasca 2.x / Score-P 1.4.1 Nekbone (CORAL benchmark) on JUQUEEN
  - Profiles: 28,672 x 64 = 1,835,008 threads !!!
  - Traces: 10,240 x 64 = 655,360 threads

[Limit: OTF2]

### Scalasca: 1,835,008 Threads Test Case



• Nekbone

CORAL
 benchmark

- JuQueen experiment
- 28,672 x 64 = 1,835,008 threads
- Load imbalance at OpenMP critical section







# **USE CASES**

### Success Story: TerrSysMP

- Scale-consistent highly modular integrated multi-physics sub-surface/surface hydrology-vegetation atmosphere modelling system
- fully-coupled MPMD simulation consisting of
  - COSMO (Weather prediction
  - CLM (Community Land Model
  - ParFlow (Parallel Watershed Flow)
  - OASIS coupler

JSC





### Success Story: TerrSysMP



- Identified several sub-components bottlenecks:
  - Inefficient communication patterns
  - Unnecessary/inefficient code blocks
  - Inefficient data structures
- Performance of sub-components improved by factor of 2!
- Scaling improved from 512 to 32768 cores!







#### Optimize Industrial HPC Applications on Heterogeneous Architectures

H4H Project Review#3, Repsol, Madrid, Spain 19th September 2013



| Company  | Area                    | Performance Analysis                    | Programming Tools | High level tools |
|----------|-------------------------|-----------------------------------------|-------------------|------------------|
| ATEME    | Video compression       | ThreadSpotter™<br>Scalasca, VampirTrace | HMPP              |                  |
| Dassault | Simulation of aircraft  | ThreadSpotter™                          | HMPP              | SAMG             |
| Aviation | design                  | Scalasca, Vampir                        |                   | Scilab           |
|          |                         | PAS2P                                   |                   | LAMA             |
| Efield   | Electromagnetic         | ThreadSpotter™                          | HMPP              | SAMG             |
|          | fields modeling and     | Scalasca, Vampir                        |                   | CuBLAS           |
|          | simulation              | Marmot                                  |                   | LAMA             |
| GNS      | Metal forming           | Scalasca/Score-P                        | HMPP              | SAMG             |
|          | processes simulation    | VampirTrace                             |                   |                  |
| INTES    | Implicit finite element | VampirTrace                             |                   |                  |
|          | analysis system         |                                         |                   |                  |
| MAGMA    | Casting process         | ThreadSpotter™                          |                   | SAMG, LAMA       |
|          | simulation              | Scalasca                                |                   |                  |
| RECOM    | 3D combustion           | VampirTrace                             | OpenACC           |                  |
| Repsol   | Seismic imaging and     | PAS2P                                   |                   | Scilab           |
|          | reservoir simulation    |                                         |                   |                  |



- Significant performance improvements for Applications through performance analysis, code restructuring / porting on GPU
- DASSAULT:
  - LAMA ⇒ sparse linear equations solver GPU-MPI **↑3x to 4x faster**
  - Scilab/GPGPU ⇒ processing electromagnetic measurements **↑3x faster**
  - Scilab/MPI ⇒ very good scalability reached in inverse design code
- RECOM:
  - Optimized particle deposition algorithm : **↑7.9x** GPU vs CPU
- MAGMA:
  - Sparse linear equations solver on GPU with SAMG 12x to 2.65x faster
  - Sparse linear equations solver on GPU with LAMA CG solver **^3x** faster
  - MPI-GPU solver kernel version with CUDA yielded a 3x speedup (8 CPU MPI vs 8 CPU / 1 GPU version)

**||||||4**||||

- GWT:
  - IUMD code → 13x speedup on GPU compared 16 OpenMP Threads Intel Xeon E5 CPU
- INTES:
  - XPU (SMP+GPU) **12.5x faster than pre-existing** 16-core SMP version
  - Combined with additional DMP parallelization, a static analysis of a motor block benchmark even showed a speedup of 68.6 against the single core time (total job) → Turnaround time for typical simulation cycles reduced from 1 week to about 2 hours (SMP+XPU+DMP).
- REPSOL:
  - **1.9x** Speedup for seismic code with GPUs and linear scaling with MPI
  - **12.6x** Speedup for Reservoir Simulator with GPUs speed up of reservoir





Runtime Analysis of Parallel applications for Industrial software Development

- Collaboration between
  - Corporate Technology Multicore Expert Center of Siemens AG
  - Jülich Supercomputing Centre
- Results
  - Tool support (Score-P, Scalasca, Vampir) for
    - Threading models (POSIX, QT, ACE, Windows)
    - MTAPI (Multicore Association Task API)
  - Windows port of basic Score-P and Cube



#### Corporate Technology | Siemens AG

### ScoreP, Scalasca and Vampir @ Siemens AG



Unrestricted © Siemens AG 2015. All rights reserved

#### Unrestricted © Siemens AG 2015. All rights reserved

# Targeted Analysis using adapted ScoreP allows relevant focussing

#### Via ScoreP, Cube, Vampir

- Effective (sub-)hotspot localization (80%)
- Identified legacy threads
- Gained insight into call hierarchy/stack





SIEMENS





#### **Questions?**





# scalasca 🗖

- http://www.scalasca.org
- scalasca@fz-juelich.de





- http://www.score-p.org
- support@score-p.org

