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Multicore Performance Analysis at Scale:

From two Embedded Cores

to one Million HPC Cores

Bernd Mohr
Jülich Supercomputing Centre, Germany
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JÜLICH SUPERCOMPUTING 

CENTRE

Forschungszentrum Jülich
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Forschungszentrum Jülich GmbH

• Germany's largest 

national laboratory

• About 5600 employees

• Research areas

 Information 

technology

 Health 

(Neuroscience / 

brain research)

 Energy and 

environment
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Jülich Supercomputing Centre (JSC)

HPC Centre for

• Forschungszentrum

Jülich

• Jülich Aachen 

Research Alliance

(JARA)

• Germany as GCS

(1 of 3 German 

National Centres)

• Europe

(1st European Centre 

inside PRACE)
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MULTICORE

PERFORMANCE ANALYSIS

How and Why
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HPC Architectures: State of the Art
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Performance Challenges for HPC Systems

• HPC systems consist of

 Complex configurations

 With a huge number of components

 Very likely heterogeneous

 With never enough memory

 Dynamically changing configuration due to fault recovery + power saving

 Deep software hierarchies of large, complex software components

are needed to make use of such systems

 Sophisticated integrated performance

measurement, analysis, and optimization capabilities

are required to efficiently operate an HPC system
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Performance Challenges for HPC Systems

• HPC systems              consist of

 Complex configurations

 With a huge number of components

 Very likely heterogeneous

 With never enough memory

 Dynamically changing configuration due to fault recovery + power saving

 Deep software hierarchies of large, complex software components

are needed to make use of such systems

 Sophisticated integrated performance

measurement, analysis, and optimization capabilities

are required to efficiently operate an HPC system

Multicore Systems

Multicore Systems

Multicore Systems

?
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Measurement Methods: Profiling 

• Recording of aggregated information

 Time

 Counts

 Calls

 Hardware counters

• about program and system entities

 Functions, call sites, loops, basic blocks, …

 Processes, threads

• Statistical information

 Min, max, mean and total number of values
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Measurement Methods: Tracing

• Recording information about significant points (events) during 

execution of the program

 Enter/leave a code region (function, loop, …)

 Send/receive a message ...

• Save information in event record

 Timestamp, location ID, event type

 plus event specific information

• Event trace := stream of event records sorted by time

• Can be used to reconstruct the dynamic behavior

 Abstract execution model on level of defined events
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Event Tracing

void foo() {

...

send(B, tag, buf);

...

}

Process A

void bar()  {

...

recv(A, tag, buf);

...

}

Process B

MONITOR

MONITOR

s
y
n
c
h
ro

n
iz

e
(d

)

void bar() {

trc_enter("bar");

...

recv(A, tag, buf);

trc_recv(A);

...

trc_exit("bar");

}

void foo() {

trc_enter("foo");

...

trc_send(B);

send(B, tag, buf);

...

trc_exit("foo");

}

instrument

Global trace 

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify

1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo1

...

bar1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...
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Event Tracing: “Timeline” Visualization

1 foo

2 bar

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main

foo

bar

58 60 62 64 66 68 70

B

A
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INSIGHTFULNESS

More than numbers and diagrams
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Interactive Event Trace Analysis: Vampir

Visual presentation 

of dynamic runtime 

behaviour

• Event timeline 

chart for states & 

interactions of 

processes/threads

• Communication 

statistics, 

summaries & more

http://www.vampir.eu/
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Vampir GUI (zoom)

Interactive browsing, 

zooming, selecting

• Linked displays & 

statistics adapt to 

selected time 

interval

Trace formats

• OTF (VampirTrace)

• OTF2 (Score-P)

• EPIK (Scalasca1) 
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“A picture is worth 1000 words…”

• “Real world” example• MPI ring program
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“What about 1000’s of pictures?”

(with 100’s of menu options)
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Example Automatic Analysis:  Late Sender
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Example MPI Wait States

time

p
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c
e
s
s

ENTER           EXIT           SEND           RECV           COLLEXIT

(a) Late Sender
time

p
ro
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e
s
s

(b) Late Receiver

time
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ro

c
e
s
s

(d) Wait at N x N
time

p
ro

c
e
s
s

(c) Late Sender / Wrong Order
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Scalasca

• Scalable Analysis of

Large Scale Applications

• Approach

 Instrument C, C++, and Fortran parallel applications

 Option 1: scalable call-path profiling

 Option 2: scalable event trace analysis

 Collect event traces

 Process trace in parallel

– Wait-state analysis

– Delay and root-cause analysis

– Critical path analysis

 Categorize and rank results

http://www.scalasca.org/
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Scalasca Example: CESM Sea Ice Module

Late Sender

Analysis

• Finds waiting at

MPI_Waitall()

inside

ice boundary

halo update

• Shows distribution

of imbalance

across system

and ranks
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Scalasca Example: CESM Sea Ice Module

Late Sender

Analysis +

Application

Topology

• Shows distribution

of imbalance

over topology

• MPI topologies

are automatically

captured
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Scalasca Root Cause Analysis

• Root-cause analysis

 Wait states typically caused by load 

or communication imbalances 

earlier in the program

 Waiting time can also propagate 

(e.g., indirect waiting time)

 Enhanced performance analysis to 

find the root cause of wait states

• Approach

 Distinguish between direct 

and indirect waiting time

 Identify call path/process 

combinations delaying other 

processes and causing first 

order waiting time

 Identify original delay

Recv

Send

Send

foo

foo

foo

bar

bar Recv

A

B

C

cause

Recv

Recv

Direct waitIndirect wait

Recv

barDELAY
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Scalasca Example: CESM Sea Ice Module

Direct Wait

Time Analysis

• Direct wait

caused by ranks

processing areas

near the north

and south

ice borders
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Scalasca Example: CESM Sea Ice Module

Indirect Wait

Time Analysis

• Indirect waits

occurs for

ranks processing

warmer areas
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Scalasca Example: CESM Sea Ice Module

Delay Costs

Analysis

• Delays NOT
caused on ranks

processing

ice!
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YOU KNOW YOU MADE IT …

… IF LARGE COMPANIES 

“COPY” YOUR STUFF
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Source:
https://software.intel.com/en-us/videos/quickly-discover-performance-issues-with-the-intel-trace-analyzer-and-collector-90-beta
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Source:
https://software.intel.com/en-us/videos/quickly-discover-performance-issues-with-the-intel-trace-analyzer-and-collector-90-beta
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INTEGRATION

Together we are strong
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Integration

• Need integrated tool (environment) for all levels of parallelization

 Inter-node (MPI, PGAS, SHMEM)

 Intra-node (OpenMP, multi-threading, multi-tasking)

 Accelerators (OpenACC, CUDA, OpenCL)

• Integration with performance modeling and prediction

• No tool fits all requirements

 Interoperability of tools

 Integration via open interfaces
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Scalasca
wait-state

analysis

CUBE4
report

Tool Ecosystem

CUBE4
report

Online interface

Instrumented

target
application 

Score-P

PAPI

OTF2
traces

TAU
PerfExplorer

Periscope

TAU

ParaProf

CUBE

Vampir

Remote   Guidance
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Connect to Vampir Trace Browser

To investigate most severe 

pattern instances, connect 

to a trace browser…
…and select trace file from 

the experiment directory
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Show most Severe Pattern Instances

Select “Max severity in trace 

browser” from context menu 

of call paths marked with a 

red frame
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Investigate most Severe Instance in Vampir

Vampir will automatically 

zoom to the worst 

instance in multiple steps 

(i.e., undo zoom provides 

more context)
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EXTREME CONCURRENCY

To infinity and beyond
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Typical HPC System Size

Number of Cores

TOP 500 systems

2000 to 2015
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Personal Motivation

JuQueen

IBM BlueGene/Q

28 racks

458,752 cores

1,835,008 HW threads

2012/2013:

Most powerful

machine in Europe!

Most parallel

machine in Europe!
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VampirServer: Trace Visualization S3D@200,448

• OTF

trace

4.5 TB

• Vampir

Server

running

with

20,000

analysis

processes
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Scalasca Trace Analysis sweep3D@294,912 BGP

• 10 min sweep3D runtime

• 11 sec analysis

• 4 min trace data write/read

(576 files)

• 7.6 TB buffered trace data

• 510 billion events

B. J. N. Wylie, M. Geimer, B. Mohr, 
D. Böhme, Z.Szebenyi, F. Wolf: 
Large-scale performance analysis 
of Sweep3D with the Scalasca
toolset. Parallel Processing 
Letters, 20(4):397-414, 2010.
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Performance Tool Scaling: Scalasca

• Latest full application test case

 Granular Dynamics Simulation

 Based on Physics Engine (PE) Framework (Erlangen), MPI only

 PRACE @ ISC Award winner

• Scalasca 1.x experiments on JUQUEEN

 Full machine experiment: 28,672 nodes x 32 MPI ranks

 917,504 processes           [Limit: Memory / System metadata]

 Largest number of threads: 20,480 nodes x 64 MPI ranks

 1,310,720 processes          [Limit: Memory / System metadata]

• Scalasca 2.x / Score-P 1.4.1 Nekbone (CORAL benchmark) on JUQUEEN

 Profiles: 28,672 x 64 = 1,835,008 threads !!!

 Traces: 10,240 x 64 = 655,360 threads                         [Limit: OTF2]
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Scalasca: 1,835,008 Threads Test Case 

• Nekbone

• CORAL 

benchmark

• JuQueen

experiment

• 28,672 x 64 = 

1,835,008 

threads 

• Load imbalance 

at OpenMP

critical section
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USE CASES
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Success Story: TerrSysMP

• Scale-consistent highly modular

integrated multi-physics

sub-surface/surface

hydrology-vegetation

atmosphere

modelling system

• fully-coupled MPMD

simulation consisting of

 COSMO (Weather prediction

 CLM (Community Land Model

 ParFlow (Parallel Watershed Flow

 OASIS coupler
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Success Story: TerrSysMP

• Identified several sub-components bottlenecks:

 Inefficient communication patterns

 Unnecessary/inefficient code blocks

 Inefficient data structures

• Performance of

sub-components

improved by factor of 2!

• Scaling improved

from 512 to 32768 cores!



H4H Project Review#3,  Repsol, Madrid,  Spain  19th September 2013 

Optimize Industrial HPC Applications on 

Heterogeneous Architectures
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H4H Application and Tool Coverage Overview 

Company Area Performance Analysis Programming Tools High level tools

ATEME Video compression ThreadSpotter™
Scalasca, VampirTrace

HMPP

Dassault
Aviation

Simulation of aircraft
design

ThreadSpotter™
Scalasca, Vampir
PAS2P

HMPP SAMG
Scilab
LAMA

Efield Electromagnetic 
fields modeling and 
simulation

ThreadSpotter™
Scalasca, Vampir
Marmot

HMPP SAMG
CuBLAS
LAMA

GNS Metal forming 
processes simulation

Scalasca/Score-P
VampirTrace

HMPP SAMG

INTES Implicit finite element
analysis system

VampirTrace

MAGMA Casting process 
simulation

ThreadSpotter™
Scalasca

SAMG, LAMA

RECOM 3D combustion VampirTrace OpenACC
Repsol Seismic imaging and 

reservoir simulation
PAS2P Scilab
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Main Achievements (Code Optimizations) 

• Significant performance improvements for Applications

through performance analysis, code restructuring / porting on GPU

• DASSAULT:

• LAMA  sparse linear equations solver GPU-MPI 3x to 4x faster

• Scilab/GPGPU  processing electromagnetic measurements 3x faster 

• Scilab/MPI  very good scalability reached in inverse design code 

• RECOM:

• Optimized particle deposition algorithm : 7.9x GPU vs CPU

• MAGMA: 

• Sparse linear equations solver on GPU with SAMG 2x to 2.65x faster

• Sparse linear equations solver on GPU with LAMA CG solver 3x faster

• MPI-GPU solver kernel version with CUDA yielded a 3x speedup

(8 CPU MPI vs 8 CPU / 1 GPU version) 
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Main Achievements (Code Optimizations) 

• GWT: 

• IUMD code  13x speedup on GPU compared 16 OpenMP Threads Intel 

Xeon E5 CPU

• INTES: 

• XPU (SMP+GPU) 2.5x faster than pre-existing 16-core SMP version

• Combined with additional DMP parallelization, a static analysis of a motor

block benchmark even showed a speedup of 68.6 against the single core

time (total job)  Turnaround time for typical simulation cycles reduced

from 1 week to about 2 hours (SMP+XPU+DMP).

• REPSOL: 

• 1.9x Speedup for seismic code with GPUs and linear scaling with MPI

• 2.6x Speedup for Reservoir Simulator with GPUs speed up of reservoir
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Runtime Analysis of Parallel applications for Industrial software Development

• Collaboration between

 Corporate Technology Multicore Expert Center of Siemens AG

 Jülich Supercomputing Centre

• Results

 Tool support (Score-P, Scalasca, Vampir) for

 Threading models (POSIX, QT, ACE, Windows)

 MTAPI (Multicore Association Task API)

 Windows port of basic Score-P and Cube



Unrestricted © Siemens AG 2015. All rights reserved

ScoreP, Scalasca and Vampir @ Siemens AG

Corporate Technology  |  Siemens AG
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Targeted Analysis using adapted ScoreP allows 

relevant focussing

Via ScoreP, Cube, Vampir

• Effective (sub-)hotspot localization (80%)

• Identified legacy threads

• Gained insight into call hierarchy/stack
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Questions?

• http://www.scalasca.org

• scalasca@fz-juelich.de

• http://www.score-p.org

• support@score-p.org


