
M
it

g
li
e

d
 d

e
r
H

e
lm

h
o
lt
z
-G

e
m

e
in

sc
h

a
ft

Multicore Performance Analysis at Scale:

From two Embedded Cores

to one Million HPC Cores

Bernd Mohr
Jülich Supercomputing Centre, Germany

February 2016 JSC 2

JÜLICH SUPERCOMPUTING

CENTRE

Forschungszentrum Jülich

February 2016 JSC 3

Forschungszentrum Jülich GmbH

• Germany's largest

national laboratory

• About 5600 employees

• Research areas

 Information

technology

 Health

(Neuroscience /

brain research)

 Energy and

environment

February 2016 JSC 4

Jülich Supercomputing Centre (JSC)

HPC Centre for

• Forschungszentrum

Jülich

• Jülich Aachen

Research Alliance

(JARA)

• Germany as GCS

(1 of 3 German

National Centres)

• Europe

(1st European Centre

inside PRACE)

February 2016 JSC 5

MULTICORE

PERFORMANCE ANALYSIS

How and Why

February 2016 JSC 6

HPC Architectures: State of the Art

Network or Switch

...

N0 N1 Nk

Inter-

connect

P0 Pn
...

Memory

A0

Am

... Inter-

connect

P0 Pn
...

Memory

A0

Am

...

Inter-

connect

P0 Pn
...

A0

Am

...

Memory

Pi
Core0 Core1 Corer

L10 L11 L1

L20 L2r/2

L30

...

... Aj

Router Router

Router

Router Router

Router

Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

Router Router Router

or

SMP

NUMA

February 2016 JSC 7

Performance Challenges for HPC Systems

• HPC systems consist of

 Complex configurations

 With a huge number of components

 Very likely heterogeneous

 With never enough memory

 Dynamically changing configuration due to fault recovery + power saving

 Deep software hierarchies of large, complex software components

are needed to make use of such systems

 Sophisticated integrated performance

measurement, analysis, and optimization capabilities

are required to efficiently operate an HPC system

February 2016 JSC 8

Performance Challenges for HPC Systems

• HPC systems consist of

 Complex configurations

 With a huge number of components

 Very likely heterogeneous

 With never enough memory

 Dynamically changing configuration due to fault recovery + power saving

 Deep software hierarchies of large, complex software components

are needed to make use of such systems

 Sophisticated integrated performance

measurement, analysis, and optimization capabilities

are required to efficiently operate an HPC system

Multicore Systems

Multicore Systems

Multicore Systems

?

February 2016 JSC 9

Measurement Methods: Profiling

• Recording of aggregated information

 Time

 Counts

 Calls

 Hardware counters

• about program and system entities

 Functions, call sites, loops, basic blocks, …

 Processes, threads

• Statistical information

 Min, max, mean and total number of values

February 2016 JSC 10

Measurement Methods: Tracing

• Recording information about significant points (events) during

execution of the program

 Enter/leave a code region (function, loop, …)

 Send/receive a message ...

• Save information in event record

 Timestamp, location ID, event type

 plus event specific information

• Event trace := stream of event records sorted by time

• Can be used to reconstruct the dynamic behavior

 Abstract execution model on level of defined events

February 2016 JSC 11

Event Tracing

void foo() {

...

send(B, tag, buf);

...

}

Process A

void bar() {

...

recv(A, tag, buf);

...

}

Process B

MONITOR

MONITOR

s
y
n
c
h
ro

n
iz

e
(d

)

void bar() {

trc_enter("bar");

...

recv(A, tag, buf);

trc_recv(A);

...

trc_exit("bar");

}

void foo() {

trc_enter("foo");

...

trc_send(B);

send(B, tag, buf);

...

trc_exit("foo");

}

instrument

Global trace

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify

1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo1

...

bar1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

February 2016 JSC 12

Event Tracing: “Timeline” Visualization

1 foo

2 bar

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main

foo

bar

58 60 62 64 66 68 70

B

A

February 2016 JSC 18

INSIGHTFULNESS

More than numbers and diagrams

February 2016 JSC 19

Interactive Event Trace Analysis: Vampir

Visual presentation

of dynamic runtime

behaviour

• Event timeline

chart for states &

interactions of

processes/threads

• Communication

statistics,

summaries & more

http://www.vampir.eu/

February 2016 JSC 20

Vampir GUI (zoom)

Interactive browsing,

zooming, selecting

• Linked displays &

statistics adapt to

selected time

interval

Trace formats

• OTF (VampirTrace)

• OTF2 (Score-P)

• EPIK (Scalasca1)

February 2016 JSC 21

“A picture is worth 1000 words…”

• “Real world” example• MPI ring program

February 2016 JSC 22

“What about 1000’s of pictures?”

(with 100’s of menu options)

February 2016 JSC 23

Example Automatic Analysis: Late Sender

February 2016 JSC 24

Example MPI Wait States

time

p
ro

c
e
s
s

ENTER EXIT SEND RECV COLLEXIT

(a) Late Sender
time

p
ro

c
e
s
s

(b) Late Receiver

time

p
ro

c
e
s
s

(d) Wait at N x N
time

p
ro

c
e
s
s

(c) Late Sender / Wrong Order

February 2016 JSC 25

Scalasca

• Scalable Analysis of

Large Scale Applications

• Approach

 Instrument C, C++, and Fortran parallel applications

 Option 1: scalable call-path profiling

 Option 2: scalable event trace analysis

 Collect event traces

 Process trace in parallel

– Wait-state analysis

– Delay and root-cause analysis

– Critical path analysis

 Categorize and rank results

http://www.scalasca.org/

February 2016 JSC 26

Scalasca Example: CESM Sea Ice Module

Late Sender

Analysis

• Finds waiting at

MPI_Waitall()

inside

ice boundary

halo update

• Shows distribution

of imbalance

across system

and ranks

February 2016 JSC 27

Scalasca Example: CESM Sea Ice Module

Late Sender

Analysis +

Application

Topology

• Shows distribution

of imbalance

over topology

• MPI topologies

are automatically

captured

February 2016 JSC 28time

Scalasca Root Cause Analysis

• Root-cause analysis

 Wait states typically caused by load

or communication imbalances

earlier in the program

 Waiting time can also propagate

(e.g., indirect waiting time)

 Enhanced performance analysis to

find the root cause of wait states

• Approach

 Distinguish between direct

and indirect waiting time

 Identify call path/process

combinations delaying other

processes and causing first

order waiting time

 Identify original delay

Recv

Send

Send

foo

foo

foo

bar

bar Recv

A

B

C

cause

Recv

Recv

Direct waitIndirect wait

Recv

barDELAY

February 2016 JSC 29

Scalasca Example: CESM Sea Ice Module

Direct Wait

Time Analysis

• Direct wait

caused by ranks

processing areas

near the north

and south

ice borders

February 2016 JSC 30

Scalasca Example: CESM Sea Ice Module

Indirect Wait

Time Analysis

• Indirect waits

occurs for

ranks processing

warmer areas

February 2016 JSC 31

Scalasca Example: CESM Sea Ice Module

Delay Costs

Analysis

• Delays NOT
caused on ranks

processing

ice!

February 2016 JSC 32

YOU KNOW YOU MADE IT …

… IF LARGE COMPANIES

“COPY” YOUR STUFF

February 2016 JSC 33

Source:
https://software.intel.com/en-us/videos/quickly-discover-performance-issues-with-the-intel-trace-analyzer-and-collector-90-beta

February 2016 JSC 35

Source:
https://software.intel.com/en-us/videos/quickly-discover-performance-issues-with-the-intel-trace-analyzer-and-collector-90-beta

February 2016 JSC 36

INTEGRATION

Together we are strong

February 2016 JSC 37

Integration

• Need integrated tool (environment) for all levels of parallelization

 Inter-node (MPI, PGAS, SHMEM)

 Intra-node (OpenMP, multi-threading, multi-tasking)

 Accelerators (OpenACC, CUDA, OpenCL)

• Integration with performance modeling and prediction

• No tool fits all requirements

 Interoperability of tools

 Integration via open interfaces

February 2016 JSC 38

February 2016 JSC 41

Scalasca
wait-state

analysis

CUBE4
report

Tool Ecosystem

CUBE4
report

Online interface

Instrumented

target
application

Score-P

PAPI

OTF2
traces

TAU
PerfExplorer

Periscope

TAU

ParaProf

CUBE

Vampir

Remote Guidance

February 2016 JSC 42

Connect to Vampir Trace Browser

To investigate most severe

pattern instances, connect

to a trace browser…
…and select trace file from

the experiment directory

February 2016 JSC 43

Show most Severe Pattern Instances

Select “Max severity in trace

browser” from context menu

of call paths marked with a

red frame

February 2016 JSC 44

Investigate most Severe Instance in Vampir

Vampir will automatically

zoom to the worst

instance in multiple steps

(i.e., undo zoom provides

more context)

February 2016 JSC 47

EXTREME CONCURRENCY

To infinity and beyond

February 2016 JSC 48

Typical HPC System Size

Number of Cores

TOP 500 systems

2000 to 2015

February 2016 JSC 49

Personal Motivation

JuQueen

IBM BlueGene/Q

28 racks

458,752 cores

1,835,008 HW threads

2012/2013:

Most powerful

machine in Europe!

Most parallel

machine in Europe!

February 2016 JSC 52

VampirServer: Trace Visualization S3D@200,448

• OTF

trace

4.5 TB

• Vampir

Server

running

with

20,000

analysis

processes

February 2016 JSC 53

Scalasca Trace Analysis sweep3D@294,912 BGP

• 10 min sweep3D runtime

• 11 sec analysis

• 4 min trace data write/read

(576 files)

• 7.6 TB buffered trace data

• 510 billion events

B. J. N. Wylie, M. Geimer, B. Mohr,
D. Böhme, Z.Szebenyi, F. Wolf:
Large-scale performance analysis
of Sweep3D with the Scalasca
toolset. Parallel Processing
Letters, 20(4):397-414, 2010.

February 2016 JSC 54

Performance Tool Scaling: Scalasca

• Latest full application test case

 Granular Dynamics Simulation

 Based on Physics Engine (PE) Framework (Erlangen), MPI only

 PRACE @ ISC Award winner

• Scalasca 1.x experiments on JUQUEEN

 Full machine experiment: 28,672 nodes x 32 MPI ranks

 917,504 processes [Limit: Memory / System metadata]

 Largest number of threads: 20,480 nodes x 64 MPI ranks

 1,310,720 processes [Limit: Memory / System metadata]

• Scalasca 2.x / Score-P 1.4.1 Nekbone (CORAL benchmark) on JUQUEEN

 Profiles: 28,672 x 64 = 1,835,008 threads !!!

 Traces: 10,240 x 64 = 655,360 threads [Limit: OTF2]

February 2016 JSC 55

Scalasca: 1,835,008 Threads Test Case

• Nekbone

• CORAL

benchmark

• JuQueen

experiment

• 28,672 x 64 =

1,835,008

threads

• Load imbalance

at OpenMP

critical section

February 2016 JSC 56

USE CASES

February 2016 JSC 57

Success Story: TerrSysMP

• Scale-consistent highly modular

integrated multi-physics

sub-surface/surface

hydrology-vegetation

atmosphere

modelling system

• fully-coupled MPMD

simulation consisting of

 COSMO (Weather prediction

 CLM (Community Land Model

 ParFlow (Parallel Watershed Flow

 OASIS coupler

February 2016 JSC 58

Success Story: TerrSysMP

• Identified several sub-components bottlenecks:

 Inefficient communication patterns

 Unnecessary/inefficient code blocks

 Inefficient data structures

• Performance of

sub-components

improved by factor of 2!

• Scaling improved

from 512 to 32768 cores!

H4H Project Review#3, Repsol, Madrid, Spain 19th September 2013

Optimize Industrial HPC Applications on

Heterogeneous Architectures

60H4H Rev iew#3 – WP4

H4H Application and Tool Coverage Overview

Company Area Performance Analysis Programming Tools High level tools

ATEME Video compression ThreadSpotter™
Scalasca, VampirTrace

HMPP

Dassault
Aviation

Simulation of aircraft
design

ThreadSpotter™
Scalasca, Vampir
PAS2P

HMPP SAMG
Scilab
LAMA

Efield Electromagnetic
fields modeling and
simulation

ThreadSpotter™
Scalasca, Vampir
Marmot

HMPP SAMG
CuBLAS
LAMA

GNS Metal forming
processes simulation

Scalasca/Score-P
VampirTrace

HMPP SAMG

INTES Implicit finite element
analysis system

VampirTrace

MAGMA Casting process
simulation

ThreadSpotter™
Scalasca

SAMG, LAMA

RECOM 3D combustion VampirTrace OpenACC
Repsol Seismic imaging and

reservoir simulation
PAS2P Scilab

61H4H Review #3 – Project Overview

Main Achievements (Code Optimizations)

• Significant performance improvements for Applications

through performance analysis, code restructuring / porting on GPU

• DASSAULT:

• LAMA  sparse linear equations solver GPU-MPI 3x to 4x faster

• Scilab/GPGPU  processing electromagnetic measurements 3x faster

• Scilab/MPI  very good scalability reached in inverse design code

• RECOM:

• Optimized particle deposition algorithm : 7.9x GPU vs CPU

• MAGMA:

• Sparse linear equations solver on GPU with SAMG 2x to 2.65x faster

• Sparse linear equations solver on GPU with LAMA CG solver 3x faster

• MPI-GPU solver kernel version with CUDA yielded a 3x speedup

(8 CPU MPI vs 8 CPU / 1 GPU version)

62H4H Review #3 – Project Overview

Main Achievements (Code Optimizations)

• GWT:

• IUMD code  13x speedup on GPU compared 16 OpenMP Threads Intel

Xeon E5 CPU

• INTES:

• XPU (SMP+GPU) 2.5x faster than pre-existing 16-core SMP version

• Combined with additional DMP parallelization, a static analysis of a motor

block benchmark even showed a speedup of 68.6 against the single core

time (total job)  Turnaround time for typical simulation cycles reduced

from 1 week to about 2 hours (SMP+XPU+DMP).

• REPSOL:

• 1.9x Speedup for seismic code with GPUs and linear scaling with MPI

• 2.6x Speedup for Reservoir Simulator with GPUs speed up of reservoir

February 2016 JSC 63

Runtime Analysis of Parallel applications for Industrial software Development

• Collaboration between

 Corporate Technology Multicore Expert Center of Siemens AG

 Jülich Supercomputing Centre

• Results

 Tool support (Score-P, Scalasca, Vampir) for

 Threading models (POSIX, QT, ACE, Windows)

 MTAPI (Multicore Association Task API)

 Windows port of basic Score-P and Cube

Unrestricted © Siemens AG 2015. All rights reserved

ScoreP, Scalasca and Vampir @ Siemens AG

Corporate Technology | Siemens AG

Page 65 Multicore Expert Center Unrestricted © Siemens AG 2015. All rights reserved

Targeted Analysis using adapted ScoreP allows

relevant focussing

Via ScoreP, Cube, Vampir

• Effective (sub-)hotspot localization (80%)

• Identified legacy threads

• Gained insight into call hierarchy/stack

February 2016 JSC 66

Questions?

• http://www.scalasca.org

• scalasca@fz-juelich.de

• http://www.score-p.org

• support@score-p.org

