Bereits 2020, als in einem kurzen Zeitfenster im Sommer persönliche Treffen möglich waren, hat eine Delegation von der Phyikalisch-Technischen Bundesanstalt (PTB) das LLEC-Projekt besucht. Gemeinsam haben wir uns die ersten (fast) fertigen LLEC-Demonstratoranlagen angeschaut und uns über die jeweiligen Forschungsinteressen ausgetauscht. Seitdem haben wir uns unzählige Male virtuell „getroffen“ und dieses Jahr im Februar wieder ein persönliches Treffen organisiert. Mittlerweile gibt es eine dauerhafte Zusammenarbeit zwischen LLEC und PTB zu fünf gemeinsamen Kernthemen – Tendenz steigend.

Weiterlesen

Mit der Projekterweiterung „P2G++“ hat nun auch das Thema Wasserstoff-Sicherheitsforschung Einzug im LLEC gehalten. Das neue Team „Hydrogen Safety“ bringt hierzu langjährige Erfahrung aus der nuklearen Sicherheitsforschung mit, ist aber auch schon seit vielen Jahren im internationalen Netzwerk HySafe und im Europäischen Wasserstoff-Sicherheitspanel aktiv. Im Rahmen des Living Labs werden wir uns mit wissenschaftlichen Arbeiten zu Sicherheitsaspekten der im LLEC entwickelten und zum Einsatz kommenden Wasserstoff-Technologien befassen.

Weiterlesen

Im Rahmen des Projekts Living Lab Energy Campus (LLEC) wird ein neuartiger Wasserstoffspeicher auf Basis der LOHC-Technologie auf dem Gelände des Forschungszentrums geplant und errichtet. Der neuartige Wasserstoffspeicher wurde bereits in einem separaten Blogbeitrag angekündigt (https://blogs.fz-juelich.de/llec/2019/12/03/neuartiger-lohc-wasserstoffspeicher/). In diesem Artikel wird der aktuelle Stand der Planungen und Neuerungen am Reaktor erläutert. Zunächst möchte ich die LOHC-Technologie näher erläutern.

Weiterlesen

Das Energiesystem der Zukunft, das im LLEC schon jetzt aufgebaut wird, basiert auf erneuerbaren und damit fluktuierenden Energiequellen. Dies macht neben der intelligenten Kopplung der Systeme auch die dezentrale Energiespeicherung für eine sichere und klimafreundliche Energieversorgung erforderlich. Um Wasserstoff als Energieträger für die Speicherung erfolgreich einsetzen zu können, ist ein hoher Wirkungsgrad bei der Umwandlung und Speicherung von zentraler Bedeutung. Mit Hochtemperatur-Festoxidwandlern ist es sowohl möglich mit elektrischer Energie per Elektrolyse Wasserstoff zu erzeugen, als auch umgekehrt, als Brennstoffzelle betrieben, Wasserstoff bei Bedarf zu verstromen. Dabei kann derselbe Zellenstapel für beide Betriebsmodi mit sehr hoher Effizienz eingesetzt werden. In diesem Fall wird in der Fachsprache von einer reversiblen Festoxidzelle bzw. rSOC (reversible Solid Oxide Cell) gesprochen. Die eingesetzten Zellen bestehen im Wesentlichen aus einem festen Elektrolyten, der bei hohen Temperaturen durchlässig für Sauerstoffionen ist, und zwei porösen Elektroden über die der elektrische Strom zu- bzw. abgeführt wird.

Weiterlesen

Ein Schlüsselelement eines zukünftigen Energiesystems ist Wasserstoff, der aus erneuerbar erzeugter elektrischer Energie hergestellt wird. Dieser Wasserstoff kann gasförmig gespeichert oder aber noch weiter umgewandelt werden, ehe er als Rohstoff oder Energieträger genutzt wird.

Eine wichtige Forschungsfrage liegt darin, wie man möglichst viel Wasserstoff mit der via Photovoltaik oder Wind produzierten elektrischen Energie erzeugen kann. Hier konnten in den letzten Jahren deutliche Fortschritte, gegenüber kommerziell erhältlichen System erzielt werden, diese wurden aber fast ausschließlich im Labormaßstab nachgewiesen. Im Rahmen des Living Lab Projektes wird nun vom IEK-14 ein Zellstapel (Stack) mit einer Leistung von 400 kW aufgebaut, der besonders leistungsstark und effizient ist. Dazu wurden neue Herstellungsverfahren am Forschungszentrum erarbeitet und in den technischen Maßstab skaliert und derzeit erfolgen die Tests der so hergestellten Komponenten der nächsten Generation.

Weiterlesen

Unser Umgang mit Energie ist im Wandel. Dies betrifft nicht nur die alltäglichen Situationen, in denen wir uns selbst daran erinnern, das Licht auszuschalten oder einmal auf das Auto zu verzichten, sondern auch die gesamte Infrastruktur von Erzeugung über die Speicherung bis hin zur Nutzung von Energie – kurzum unser gesamtes „Energiesystem“. Um diesen Wandel zu vollziehen, benötigen wir intelligente, dezentrale und vor allem vernetzte Technologien, die im Rahmen des Projektes „LLEC::JuPilot“ entwickelt und am Schülerlabor des Forschungszentrums Jülich erlebbar gemacht werden sollen.

Weiterlesen

Eine der zentralen Fragestellungen im Rahmen der Energiewende ist die saisonale Speicherung großer Mengen von Energie. Im Juni 2019 wurde das LLEC-Projekt daher um eine weitere, zentrale Komponente erweitert. Dabei handelt es sich um eine neuartige Technologie auf Basis von LOHC (Liquid Organic Hydrogen Carrier), welche die chemische Speicherung großer Mengen von Energie in füssiger Form erlaubt. Die Energiedichte des beladenen Fluids beträgt dabei ca. 1,86 MWh/m3 und entspricht damit Druckwasserstoff bei etwa 700 bar. Die weltweit einzigartige Demontrationsanlage arbeitet im Verbund mit der neuen Wärmevollversorgungszentrale (WVVZ) und wird durch die Sektorkopplung von Strom, Wärme und chemischer Energie Speicherwirkungsgrade von über 90% erreichen.

Weiterlesen

Herzlich Willkommen! In unserem ersten Beitrag wollen wir euch einen Überblick über unser Projekt geben: Was macht das Projekt aus? Wie ist es zu Stande gekommen? Wer ist bisher alles dabei? Und was erwartet euch in zukünftigen Beiträgen? Wir haben uns vorgenommen etwa einmal im Monat einen Blog zu veröffentlichen, jeweils mit einem anderen Schwerpunktthema. Wir freuen uns natürlich immer über Fragen und Hinweise über die Kommentarfunktion. Weitere Infos zum Projekt erhaltet ihr auch unter www.llec.info.

Weiterlesen