JAIME steht für „Jülich Accelerator for In-situ Material Experiments“ und ist ein Projekt mehrerer Jülicher Institute, einen Teilchenbeschleuniger für die Materialforschung  mit geladenen Teilchen (H, D, He, Li und N) und Neutronen aufzubauen und zu betreiben. Dazu haben sich mehrere Jülicher Institute, die sowieso schon einen starken Schwerpunkt und entsprechende Kompetenzen in der Materialforschung haben, zusammen geschlossen. Ganz konkret sind das IKE-1, IEK-2, IEK-4, PGI-4, PGI-9 und das JCNS, das Jülich Centre for Neutron Science, dem ich angehöre.

Dadurch, dass so viele Institute zusammen arbeiten, entstehen viele Synergien und es können Ressourcen genutzt werden, die sonst viel Geld kosten würden. Zum Beispiel betreiben mehrere der Institute bereits jetzt einen kleineren Tandem-Beschleuniger, so dass die Fähigkeiten und Ausbildungen (z.B. im Strahlenschutz) bereits vorhanden sind. Dazu steuert das IEK-4 die alte, aktuell leerstehende, Textor-Halle (des alten Tokamak-Fusionsreaktorprototypen) bei, die nicht nur über entsprechend viel Platz, sondern auch über eine gute Stromversorgung verfügt und (am wichtigsten) noch ein radioaktiver Kontrollbereich ist, so dass mit minimalstem Aufwand direkt mit ionisierender Strahlung gearbeitet werden kann.

Einen Teilchenbeschleuniger haben wir uns auch bereits ausgeguckt. Es soll ein Tandembeschleuniger mit 16 MeV (P und D) werden, der mit einer geeigneten Quelle auch im gepulsten Modus betrieben werden kann und nicht, wie für einen Tandem üblich, in kontinuierlichem Modus. Aktuell kann ich noch nicht viel über die Projekte der anderen Institute sagen, da ich mich mit den Themen “Fusionsforschung”, “Plasmaphysik” und „Nano- Halbleitertechnik“ nicht wirklich gut auskenne. Aber das Ganze wird sich spätestens am 26.Oktober ändern. Da haben wir den ersten JAIME-Workshop, wo die ganzen teilnehmenden Institute zusammen kommen und ihre jeweiligen Spezialgebieten den anderen vorstellen. Ion Beam Analysis“ steht genauso auf dem Plan, wie Solid State Batteries und unsere ganzen geplanten Neutronenanwendungen. Spätestens über die letzteren kann ich jetzt schon mal an dieser Stelle berichten.

Derzeit betreibt das JCNS sehr gute Neutroneninstrumente an den besten Quellen weltweit… aber halt leider nicht in Jülich, weil es hier keine Neutronen mehr gibt. Das heißt, dass wir auch für alle Detektorentests, Weiterentwicklungen von Instrumenten, Ausbildung von Doktoranden und normalen, durchschnittlichen Messungen nach Garching bei München oder nach Grenoble in Frankreich oder OakRidge in den USA fahren müssen. Um langfristig eine große Neutronenquelle hier nach Jülich zu bekommen, haben wir das HBS-Projekt ins Leben gerufen, von dem ich hier schon oft erzählt habe. Aber das ganze hat auch einen Zwischenschritt, die NOVA ERA (Neurons Obtained Via Accelerator for Education and Research Analysis). Dies soll eine Neutronenquelle sein, die so kompakt ist, dass sie auch an einer Universität betrieben werden kann. Also etwas, dass wir innerhalb des JAIME-Projektes realisieren können.

Hier ist schon mal eine grobe Skizze des Aufbaus zu sehen. Auf der linken Seite werden die Strahlen der geladenen Teilchen auf die einzelnen Experimente aufgeteilt, die sich eben mit Ionen beschäftigen und auf der rechten Seite steht das Target, in dem die Neutronen für die Neutronenstreuexperimente produziert werden. Da man Neutronen nicht wirklich ablenken kann, müssen dann auf der rechten Seite alle Neutroneninstrumente mehr oder weniger in direkter Sichtlinie zu dem neutronenproduzierenden Target positioniert werden. Dabei wollen wir die neue Möglichkeit dieser Art von Neutronenquellen ausnutzen und die Beamlines in allen drei Dimensionen (also auch nach oben und unten) um das Target herum positionieren und nicht, wie aktuell üblich, nur in der Horizontalen.

Aktuell planen wir mit 5-6 Instrumenten, die zum Standardrepertoire einer Neutronenquelle gehören. Beim Imaging werden Bilder mithilfe eines Durchleuchtungsverfahrens aufgenommen – so wie mit Röntgen am Flughafen, nur mit dem Unterschied, dass Neutronen durch Blei hindurchgehen wie ein heißes Messer durch Butter und man vor allem Energiematerialien der Zukunft, wie Lithium oder Wasserstoff hervorragend sehen kann. Mit der prompten Gamma-Analyse können Materialien auf ihre chemische Zusammensetzung hin untersucht werden und mit der Pulver-Diffraktometrie erhalten wir Informationen über die Kristallstruktur unserer Probe. Mit dem Reflektometer und dem Small Angle Scattering schließlich erhalten wir wichtige Informationen über Nanomaterialien, dünne Schichten und biologische Systeme komplementär zu denselben Techniken mit Röntgenstrahlen, die wir zur Zeit schon hier in unserem Institut durchführen.

Also ich hoffe, nach dem Workshop noch wesentlich mehr berichten zu können und wenn bis dahin irgendwelche Fragen bestehen, freue ich mich natürlich immer über Kommentare und Anregungen unter dem Artikel.


 

PS: Folien aus dem Beitrag von Johannes Baggemann zu unserem Unkel Workshop letzte Woche, von dem ich auch schon berichtet hatte.

PPS: Mehr Informationen gibt es dazu im aktuellen Newsletter des FZ, der heute erschienen ist.

Ab dem dritten Mal wird es eine gut etablierte Tradition, sagt man. In dem Sinne angewendet treffen sich traditionell alle europäischen Partner, die CANS (Kompakte Beschleuniger-getriebene Neutronenquellen) entwickeln und bauen wollen, mit ausgewählten internationalen Partnern in dem kleinen beschaulichen Dörfchen Unkel am Rhein bei Bonn, um sich gegenseitig auf den neuesten Stand zu bringen und die nächsten koordinierten Schritte zu planen. Wie die letzten beiden Male war ich diesmal auch wieder mittendrin und werde die Gelegenheit nutzen, davon zu berichten.

Also, was gibt es Neues? “Die Ungarn” haben ein Wirtschaftsförderprogramm zugesprochen bekommen und werden für ca. 4M€ eine CANS in Budapest bauen. Das Grundstück ist gekauft, das Gebäude vom Architekten geplant und die Ausschreibung für den Teilchenbeschleuniger läuft. Laut Plan soll die Quelle bis Ende 2020 stehen und dann primär für Tests von kommerziellen Neutronenleitern genutzt werden. Das ganze ist nämlich ein Wirtschafts- und keine Wissenschaftsprojekt. Derzeit werden Neutronenleiter an den großen Reaktorquellen getestet, was ca. 10-15k€ pro Tag kostet. Wenn man nun das ganze an eine eigene Quelle auslagern würde, dann spart man ca. 100k€ pro Monat, so dass sich die Quelle in weniger als 10 Jahren rentiert hat… aus Wirtschaftssicht eine gute Investition.

A propos gute Investition: “Die Franzosen” haben aus mehreren verschiedenen Projekten ein wissenschaftliches Budget eingeworben, was nun die Startfinanzierung des SONATE-Projektes darstellt. SONATE soll ihren Dienst als Prototyp mit reduzierter Leistung bis 2020 aufnehmen, um dann einigen ausgewählten Anwendungen einen direkten Übergang nach dem Abschalten des Pariser Forschungsreaktors Orphé zu gewährleisten. Je nachdem, ob in diesem Zeitraum dann die entsprechenden Gelder für den weiteren Ausbau aufgetrieben werden können, würde dann der Teilchenbeschleuniger IPHI ausgebaut werden und in eine neues Gebäude umziehen (müssen), in dem dann genug Platz ist, um mehrere Targetstationen und Instrumente aufzubauen.

Gruppenphoto des 3. CANS Workshop

Gruppenphoto des 3. CANS Workshop

“Die Deutschen” waren auch nicht untätig, haben wahrscheinlich die Partikelfrage geklärt und schon mal einen kalten Moderator gebaut und in Betrieb genommen. Was finanzielle Unterstützung angeht, haben wir leider noch nichts Nennenswertes vorzuweisen, außer hier und da ein paar neue Stellen und Mitarbeiter. Aber es gibt das JAIME-Projekt mit dem auch Deutschland eine nennenswerte Chance hätte, noch in 2020 eine eigene CANS zu bekommen. Doch davon werde ich auch auf jeden Fall noch mal in einem eigenen Artikel berichten.

Die Spanier, Schweizer und Dänen hatten auch kleine Fortschritte zu berichten und die Japaner, die wir ja gerade erst besucht hatten, haben ebenfalls eine neue kalte Quelle in Betrieb genommen. Es geht also voran.

Was nicht geklappt hat, war unser gemeinsames EU-Projekt CANS4EU, welches nicht unter den Top10-EU-Kooperationsprojekten gelandet ist und damit erst mal nicht mit EU-Geldern gefördert wird. Das ist schade, aber eine Chance gibt es noch. Wegen des großes Zuspruches zu dem Projekt (mehr als 40 Bewerbungen) wird derzeit überlegt, den Finanzrahmen auszubauen (zu verdoppeln) und dann noch die nächsten 10 Projekte auf der Liste ebenfalls zu fördern. Da wären wir auch mit dabei und das entsprechende Budget wäre sicher hochwillkommen. Währenddessen haben wir beschlossen auf welche weiteren Projekte wir uns gemeinsam (mit 7+ europäischen Teilnehmern) bewerben wollen, so dass es bald wieder heißt: Anträge schreiben (Urgs).

Tja, also erst mal nichts wirklich Weltbewegendes und keine richtig großen Ankündigungen, aber weitere wichtige Schritte in die Zukunft der Neutronennutzung in Europa. In den letzten beiden Jahren haben wir den Wagen ins Rollen bekommen und dieses Jahr freudig feststellen können, dass er ordentlich Geschwindigkeit und Schwung aufnimmt. Ich freue mich sehr, an vorderster Front mit dabei sein zu können, auf dem Kutschbock sozusagen, und werde mein Möglichstes tun, um auch weiter live von der Fahrt zu berichten.

Vor zwei Wochen haben wir am COSY-Beschleuniger (bzw. JULIC) versucht, herauszufinden, welche Teilchen die meisten Neutronen produzieren, wenn man mit ihnen ein Berylliumtarget beschießt. Das ist vor allem für die Entwicklung von Beschleunigergetriebenen Neutronenquellen, sog. CANS, wichtig, die wir hier in Jülich zur Zeit entwickeln.

Eigentlich produzieren so ziemlich alle Teilchen freie Neutronen, wenn man sie auf irgendein Ziel schießt, was beim Bau und Betrieb von Teilchenbeschleunigern ziemlich nervig sein kann. Wenn man aber gezielt so viele Neutronen wie möglich produzieren möchte, wie wir z.B. in unserem HBS-Projekt, dann muss man schon etwas Aufwand betreiben. Als Ziel für die niederenergetische Kernreaktion eignet sich am ehesten ein leichtes Element, wie Lithium oder Beryllium, da darin die Eindringtiefe am größten ist. Aber mit welchem Partikel wollen wir denn jetzt da draufschießen? Welches Teilchen ist am effektivsten?

COSY_1

Manchmal sieht richtige Physik eher aus wie Archäologie

Simulationen mit Monte-Carlo-Code haben gezeigt, dass in dem Energiebereich zwischen 10 und 50 MeV Deuteronen (also ein Proton und ein Neutron) bei der gleichen Energie einen Vorteil von ca. 100% haben… je nachdem, welche Datenbanken man benutzt. Der MCNP-Transportcode simuliert den Weg von jedem einzelnen Teilchen von der Quelle im Teilchenbeschleuniger, über die Neutronenproduktion im Target, bis zum Detektor. Dabei nimmt es für jede Interaktion eine bestimmte Wahrscheinlichkeit an, die von externen internationalen Datenbanken zur Verfügung gestellt werden. Diese Datenbanken sind in manchen Bereichen extrem präzise. Alles, was mit Kernreaktoren und Spaltungsneutronen zu tun hat, ist wegen Atomwaffen und -kraftwerken extrem gut erforscht und sehr zuverlässig. Aber sobald Reaktionen benutzt werden, die nicht so präzise bekannt sind, wird es problematisch.

Bei den neutronnenproduzierenden Wirkungsquerschnitten gibt es Abweichungen um bis zu 800%. Für die Simulanten ist das immer noch recht präzise, aber wir Neutronenphysiker raufen uns da die Haare. Für eine Erhöhung des Neutronenflusses um 100% wurde in der Vergangenheit mal gerne ein neuer Forschungsreaktor für 2 Milliarden gebaut. So ein Unterschied ist wichtig.

COSY_2

Neue Beamline direkt zum Julic Zyklotron

Wenn vorhergegangene Experimente und Simulationen so eine große Ungenauigkeit haben, muss man halt nachmessen und genau das haben wir gemacht. Die Jungs vom COSY-Beschleuniger haben extra für uns ein Loch in die 3 Meter Betonabschirmung um ihr Zyklotron (den JULIC) gebohrt, damit wir uns direkt etwas von dem Strahl des JULIC abzapfen können, ohne ihn durch den Cooler Synchrotron schicken zu müssen. In diesen Strahl werden dann sog. Degrader-Platten reingehalten, mit der die Energie des Strahles dann noch weiter gesenkt werden kann, bevor er das Ziel (unseren Berylliumklotz, den ich zu Weihnachten im alten Büro-Schrank gefunden hatte) trifft. Das JULIC Synchrotron kann man sowieso zwischen Protonen und Deuteronen umschalten, so dass wir alles für eine entsprechende Studie zur Verfügung hatten.

COSY_03

Schema des COSY Beschleunigers des FZ Jülich

Vor drei Wochen haben wir dann unser Target mit Protonen und Deuteronen bei verschiedenen Energien beschossen und gemessen, wie viele Neutronen produziert werden. Ganz so leicht, wie ich das hier darstelle, ist die Auswertung aber leider auch wieder nicht und der gute Kollege muss sicher noch ein paar Wochen von dem Rechner sitzen, bevor er genaue Ergebnisse hat. Aber eines kann ich schon mal verraten: Bei 40MeV produzieren Deuteronen ca. 70% mehr Neutronen als Protonen derselben Energie. Das wissen auf der ganzen Welt bislang nur die Leute, die an dem Experiment teilgenommen haben und unsere internationalen Partner. Das heißt, dass die Leser dieses Blockes dann die 51zigsten (etc.) Menschen auf diesem Planeten sind, die diese brandneuen Informationen haben. Echte Wissenschaft live … sozusagen. 😉

Leider reichen die Ergebnisse noch nicht, um uns für eine Teilchenart für die HBS-Neutronenquelle zu entscheiden. Klar würden wir gerne 70% mehr Effektivität mitnehmen und benutzen, aber leider sind Deuteronen auch etwas komplizierter in der Benutzung als Protonen. Deuteronen müssen in einem Linearbeschleuniger recht “zärtlich” beschleunigt werden, denn sonst strippen sie vorher schon ihr Neutron ab und das landet dann irgendwo im Beschleuniger, wo man es nicht haben will. Daher sind Deuteronenbeschleuniger etwas komplizierter und damit auch etwas teurer. Nun ist die Frage, macht die Leistungsverbesserung den Preisunterschied wett oder nicht? Das können wir zur Zeit noch nicht definitiv beantworten, aber aktuell sieht es eher danach aus, als ob die Deuteronen ein wenig an Attraktivität gegenüber den Protonen eingebüßt hätten … zumindest gegenüber unseren ersten Simulationsergebnissen.

Vor zwei Jahren hatte ich ja ein ziemlich düsteres Bild der europäischen Neutronenlandschaft gezeichnet und es mit der bröckelnden Neutronenpyramide bebildert, aus deren Innenraum ein finsterer böser alter Gott hervorgekrochen kommt. Nun finde ich, ist es Zeit mal ein wenig positiver in die Zukunft zu schauen und auch dafür hat der gute Jacob Müller mal wieder tief in die Trickkiste gegriffen, den Griffel gespitzt und ein Stück Kunst aufs digitale Papier gebracht. Diesmal ist es ein Wimmelbild geworden, vor dem auch der langjährige Neutronenphysiker ein paar Minuten sitzen und immer wieder neue kleine Details entdecken kann.

Diese Neutronenpyramide steht ein paar Jahre in der Zukunft, was man daran erkennen kann, dass die Europäische Spallationsquelle, die ESS, der große Leuchtturm der Neutronenforschung, die leistungsstärkste Quelle der Welt, ihren Betrieb schon aufgenommen hat. Also muss es irgendwo im Jahre 2025-2030 spielen. Wie vorher angekündigt, wurden die Forschungsreaktoren in Berlin und Paris (LLB Saclay) abgeschaltet und stehen nicht länger zur Verfügung, damit internationale Forscher mit ihrer Hilfe forschen könnten. Aber anders als zuvor befürchtet wurde die entstehende Lücke mit Säulen und Stützstreben gefüllt, die die Namen der neuen hochbrillianten CANS Neutronenquellen tragen. Der Verlust der Basis, der Arbeitstiere, der Mittelflussreaktoren aus den 60er und 70er Jahren wurde von einer neuen Art Neutronenquelle auf Basis von Teilchenbeschleunigern kompensiert. Außerdem wurde zeitgleich der nächste Schritt auf der Evolutionsleiter gegangen und die ägyptische Architektur der Pharaonen hat Elemente erhalten, die schon eher an die griechische Antike erinnern und den Weg für neue Gebäudeformen eröffnen.

Die Namen stehen dabei für die aktuellen Projekte von Frankreich (SONATE), Spanien(HBS Bilbao) und Deutschland (HBS Jülich), aber das ist nur der aktuelle Stand. Eigentlich versuchen wir noch viel mehr Länder und Organisationen davon zu überzeugen, den Schritt zu den Neutronenquellen der Zukunft zu gehen und es gibt bereits mehr als eine erfolgsversprechende Idee (z.B. in Italien und Ungarn).

Aber jetzt möchte ich euch nicht weiter mit den politischen Plänen in der europäischen Neutronenlandschaft langweilen, sondern ein wenig das tolle Bild von Jacob erkunden lassen, auf dem so einige Details für den aufmerksamen Beobachter versteckt sind. Denn frei nach dem Motto aktuelle Themen der Wissenschaft anders zu kommunizieren als in staubtrockenen Papern hinter Journal-Paywalls, haben wir hier mal mindestens eine Neutronenquelle der nächsten Generation grafisch untergebracht. Ich will jetzt auch nicht zu viel verraten, aber in Ägypten gab es offensichtlich schon Teilchenbeschleuniger, Neutronentargets und kalte Quellen für die Kristallographie…

Pyramide_pos_V02

Ich bemühe mich ja immer mal wieder, unorthodox zu kommunizieren und die Neutronenpyramide ist eine der Möglichkeiten dies zu machen. Dieses Blog ist eine weitere und danach gibt es noch Science Slams und ähnliche Veranstaltungen. Ich freue mich in einer Zeit zu leben, wo so eine Art der Wissenschaftskommunikation möglich ist und es betrübt mich in einer Zeit zu leben, wo so eine Kommunikation noch wichtiger und noch notwendiger geworden ist, als sie es normalerweise schon wäre. In einer Zeit der alternativen Fakten, wo es wichtiger ist, wie viele Leute zu der politischen Veranstaltung kommen, als eine wilde Behauptung aus dem Internet vernünftig zu hinterfragen und zu belegen.

Naja, falls ich mich vor wilden Verschwörungstheorien hätte retten wollen, dann hätten wir uns wahrscheinlich ein anderes Motiv als eine Pyramide aussuchen sollen. Zumindest haben wir kein Auge ins Zentrum gesetzt… also neben den Stein, auf dem ISIS (also die englische Spallationsquelle) steht. Ähem, also erst mal viel Spaß mit der zweiten Pyramide und sobald wir uns wieder das nächste visuelle Projekt ausdenken (und davon wird es bestimmt noch einige geben) dann werde ich euch natürlich wieder hier live (mehr oder weniger) davon berichten.

Eine Auswahl der aktuellen Doktorantinnen

Eine Auswahl der aktuellen Doktorantinnen

Na, wer will meinen Job haben? Viel Arbeit, viel Herumgereise durch die Weltgeschichte, Arbeiten mit radioaktiven Materialien und geregelte Arbeitszeiten kenne ich nur vom Hörensagen. Dafür gibt es dann die einzigartige Möglichkeit an einem brandneuen Projekt mitzuarbeiten, das es auf der Welt in dieser Form noch nicht gegeben hat und kompakte Neutronenquellen als mikroskopische Sonde in der Materialforschung einem breiten Universitätspublikum zugänglich zu machen.

Der zukünftige engste Kollege ist ein Idiot und diskutiert im Internet mit Bananen, aber der Chef ist toll und die Arbeitsgruppe und das Institut sowieso.

Oder anders gesagt: Meine Zeit als Doktorandin ist vorbei und ich suche eine Nachfolgerin für eine Promotionsstelle in der Physik, konkret der Neutronenstreuung bzw. Moderation. Noch konkreter soll ein kryogener ortho/para Wasserstoffmoderator, den irgendeine Idiotin mit zwei linken Händen zusammengestöpselt hat, in Dauerbetrieb genommen und weiterentwickelt werden. Als Anforderungsprofil für die Stelle gäbe es diesen Ansatz:

  • Die Schrauberin: Abschluss in Physik, physikalische Chemie, Materialwissenschaften oder als Physikingenieurin mit einem starken experimentellen Schwerpunkt in Kryotechnik, Festkörper- oder Kernphysik. Grundlagenkenntnisse in Quantenmechanik sind Voraussetzung. Experimentelle Erfahrung in einem der folgenden Gebiete: Raman-Spektroskopie, Neutronen- (ggf. Röntgen)streuung oder Kryotechnik ist erforderlich, sowie die Bereitschaft sich in die anderen einzuarbeiten. Grundlagenkenntnisse in CAD, ANSYS und/oder LabView wären hilfreich, können aber auch “on the job” erworben werden. „Handelsübliche“ Kenntnisse in Programmierung und elektronischer Datenverarbeitung werden vorausgesetzt. Ach ja, und das Wichtigste ist natürlich die Lust an einem komplexen Gerät, das es in dieser Form noch nicht auf der Welt gibt, so lange herumzuschrauben und zu basteln (und darauf einzuschlagen), bis es vernünftig funktioniert und eine neue Ära in der Erforschung kondensierter Materie einleitet.

Für diese, zugegebenerweise nicht ganz einfachen Anforderungen, gibt es dann die üblichen Doktorandinnenleistungen: Dreijahresvertrag, ein Gehalt von dem man nicht verhungert (75% von dem, was ein Lehrer verdient (¾ E13) ) und eine Promotion an der RWTH Aachen (Fakultät Physik, Lehrstuhl Festkörperphysik Dr. rer. nat. oder bei Bedarf auch Dr. ing. möglich). Dazu kommt der Bonus des Forschungszentrums Jülich d.h. gute Fortbildungsprogramme, Konferenzen und logistische Unterstützung, wenig Lehrverpflichtung (nur Spezialvorlesungen, bei denen man selber noch was lernt) und exzellente Forschungsinfrastruktur (Geräte, Ausstattung und Techniker, Elektriker, Ingenieure etc.).

Dienstort ist das malerische Jülich inmitten von Rübenäckern und Bergbaulöchern, aber Wohnen in Aachen, Köln oder… notfalls auch… urgs… Düsseldorf funktioniert erfahrungsgemäß auch ganz gut, obwohl ich in meinen drei Jahren wohl maximal die Hälfte der Zeit vor Ort und den Rest an irgendwelchen externen Forschungsorten verbracht habe.

Bei Fragen könnt ihr euch gerne hier oder per Mail melden. Die Bewerbung bitte über den offiziellen Weg über das Forschungszentrum Jülich.

… und übers Weitersagen an Freunde und Bekannte, die dafür in Frage kommen würden, würde ich mich natürlich freuen.

Die Offizielle Stellenausschreibung gibt es hier: http://www.fz-juelich.de/SharedDocs/Stellenangebote/_common/dipldok/d129-2017-jcns-2.html?nn=718260

Wer erfolgreich eine tolle Kandidatin für uns einwirbt bekommt von mir wahlweise einen persönlichen Artikel über ein Thema der Wahl, ein Waffeleisen oder einen Eisbecher ausgegeben.

20170817_155944

Einbau des kryogenen Wasserstoffmoderators. In der kleinen Alu-Koladose auf der linken Seite wird später der Wasserstoff einkondensiert werden.

Am 23. August 2017 war es so weit, nach über 2 Jahren Vorbereitung haben wir es endlich geschafft und am Ausbildungskernreaktor der TU-Dresden mit einem Moderator, mit flüssigem Wasserstoff, ausreichend Neutronen kalt gemacht. Wie ich hier ja schon mal öfter geschrieben habe sind kalte Neutronen für die Wissenschaft extrem interessant, weil man damit (wie mit Röntgen, nur besser) sehr gut Materialien in der Physik, Biologie und Chemie untersuchen kann. Doch leider sind Neutronen bei der Produktion erst mal sehr schnell (10% Lichtgeschwindigkeit) und müssen auf Schrittempo abgebremst (moderiert) werden. Dabei wird ihre Temperatur von mehreren Millionen Grad Celsius auf -250°C, nahe am absoluten Nullpunkt, verringert. Das geht am besten mit flüssigem Wasserstoff bei -250°C denn da verlieren die Neutronen beim “Antitschen” am meisten Energie. Die Königsdisziplin ist dabei der sog. Para-Wasserstoff. Das Wassertoffmokekül besteht aus 2 Protonen, die jeweils einen Spin Up oder Down haben. Ist der Spin symmetrisch heißt er Ortho (Triplett) und ist er antisymmetrisch heißt er Para (Singulett). Der Trick ist nun, dass für thermische und heiße Neutronen beide Spin Zustände gleich aussehen, aber für kalte Neutronen der Para-Wasserstoff nahezu durchsichtig wird und keine Neutronen mehr streut. Durch geschickte Anordnung können wir also nun einen Extraktionsmeschanismus bauen, der thermische Neutronen weiterhin heruntermoderiert, kalte Neutronen aber heraus lässt, damit wir sie an unseren Experimenten benutzen können.

IMG_0465

Das Kernteam nach dem ersten erfolgreichen Betrieb einer niedrigdimensionalen kalten paraH2-Quelle an einem Reaktor

Genau das haben wir von zwei Wochen zum ersten mal erfolgreich getestet, indem wir am AKR-2 Reaktor der TU-Dresden ca. 200 ml flüssigen Para-Wasserstoff bei kryogenen Temperaturen verflüssigt und mit Neutronen gefüttert haben. Dabei heißt “zum ersten Mal” tatsächlich, dass wir die ersten Menschen waren, die einen niedrigdimensionalen Para-Wasserstoffmoderator an einer Reaktorquelle betrieben konnten. Das ganze ist halt auch gar nicht soooo einfach… hauptsächlich wegen des “Hindenburg-Syndroms”, durch dass alle Betreiber von Forschungsreaktoren immer so einen komischen Gesichtsausdruck bekommen haben, wenn ich sie fragte, ob ich denn nun mit meiner Knallgasbombe an den Kern ihres Reaktors dran darf.

Daher haben wir uns den Ausbildungskernreaktor der TU-Dresden für unsere erste Tests ausgesucht. Der hat nur 2 Watt thermische Leistung (noch nicht mal genug um eine Glühbirne zu betreiben) und steht in einer großen Halle, die wir während den Wasserstoffexperimenten ganz für uns alleine haben können. Trotz der geringen Leistung produziert er allerdings immer noch 10^8 Neutronen pro Sekunde, die unsere Moderatoroberfläche erreichen, was für viele Messungen vollkommen ausreichend ist. Da der AKR-2 aber immer noch ein richtiger Reaktor ist mussten wir für die Experimente mit dem Wasserstoff erst einmal einen längeren Genemigungsprozess durchmachen und viele Sicherheitsmaßnahmen einbauen, die verhindern, dass irgendwo in unserer ganzen Anordnung explosionsfähige Gemische entstehen. Das ganze wird noch mal dadurch erschwert, dass Wasserstoff (bei unseren Drücken von ca. 1,5 bar(A)) unter ca. 11 Kelvin fest und über 22 Kelvin gasförmig wird und wir mit flüssigem Helium bei 4 Kelvin kühlen müssen. Sprich wenn wir außerhalb dieses, für die Praxis doch recht kleinen, Temperaturintervalls arbeiten, dann frieren wir uns entweder eine der Wasserstoffleitungen mit einem Wasserstoff-Eis Propfen zu oder schaffen es nicht genug flüssigen Wasserstoff in unser Gerät herein zu bekommen. Also eine ganz spannende Sache.

Lange Rede kurzer Sinn, nach viel Arbeit (also essentiell meiner Doktorarbeit) haben wir es geschafft ein System aufzubauen, in dem ein kryogener Moderator mit flüssigem Para-Wasserstoff Neutronen durch kinetische Stöße (und Spin-Flip) abkühlt und gerichtet zu einem Detektor führt, wo ich sie messen kann. Ich bin sehr glücklich, dass es alles (mehr oder weniger) geklappt hat und wollte euch alle nur mal kurz hier mit diesem Artikel an meinem Glück teilhaben lassen. Eine ausführliche Beschreibung (ca. 200-300 Seiten) werde ich dann demnächst hier auch mal hochladen, wenn die Veröffentlichungen raus sind 😉

3K0A0129Wenn wir schon mal auf der anderen Seite der Welt sind, dann können wir ja auch noch gerade mal in Korea vorbeischauen und dort auf eine Konferenz gehen. Naja, ehrlich gesagt haben wir unsere Japanreise natürlich schon so geplant, dass sie mit der größten Neutronenstreukonferenz der Welt, die alle vier Jahre stattfindet, zusammenfällt und diesmal war es eben im Sommer 2017 in Daejeon, Korea.

Konferenz für Neutronenstreuung heißt hierbei, dass es sich hauptsächlich um die Anwendung von Neutronenstrahlen dreht. Also die Instrumente, die an einer solchen Quelle betrieben werden können und die konkrete Wissenschaft, die damit gemacht werden kann. Ich saß z.B. in einem Vortrag zu dem Multiferroikum MnWO4 (bzw. Hübnerit), wo neue Erkenntnisse zu dessen magnetischer Struktur vorgestellt wurden. Denn wie manch andere multiferroische frustrierte Spinsysteme auch, erzeugt dieses Material eine Spinspirale, die besonders gut mit polarisierten Neutronen erforscht werden kann und mit der man z.B. elektronische Speicher und Quantencomputer der Zukunft herstellen könnte – Grundlagenforschung also.

3K0A1142Aber auch wir hatten mit unserer neuen Art Neutronenquelle dort einen festen Platz und waren recht beliebt bei den ganzen Forschern, die sich fragen, wo sie denn in Zukunft ihre Neutronen herbekommen sollen. Bei den vielen Beiträgen sind die Vortrags-Slots entsprechend hart umkämpft und ich hatte diesmal leider keinen Vortrag bekommen, sondern musste mich mit einem Poster begnügen. Nur einer aus unserem Team durfte letztendlich unsere Neutronenquelle dort auf der Bühne vorstellen und wir anderen mussten auf Laufkundschaft an unseren Postern warten. Davon gab es dann allerdings recht viele und mein Poster hat dann letztendlich auch den “Best Poster Award” gewonnen. Eine Tatsache, die ich aber wohl wesentlich mehr Jakob Müller und seinen tollen Zeichnungen zu verdanken habe als meinen bescheidenen “Grafik-zusammenstöpsel”-Kenntnissen. Da das Poster sowieso schon seinen Weg in die Öffentlichkeit gefunden hat, will ich es euch natürlich auch nicht vorenthalten und habe es daher der Vollständigkeit hier noch einmal hochgeladen (ICNS2017PP).

Blick in die Neutronenleiterhalle des HANARO Forschungsreaktors

Blick in die Neutronenleiterhalle des HANARO Forschungsreaktors

Zu der Konferenz selber gehörte auch noch eine Tour durch den Forschungsreaktor HANARO in Daejeon, der eigentlich, genauso wie der FRM-2 in Garching, hauptsächlich als Neutronenquelle für Streuexperimente von Physikern, Chemikern und Biologen dient. Im Gegensatz zu Garching ist der Reaktor aber ein Jahr nach dem Reaktorunfall von Fukushima abgeschaltet und seitdem nicht wieder hochgefahren worden. Wer also Angst vor Kernreaktoren für eine typisch deutsche Errungenschaft gehalten hat so wie ich z.B., der kann an diesem Beispiel lernen, dass dies vor allem im asiatischen Raum in China, Japan und eben Korea auch ein großes politisches Thema ist. Teilweise sogar wesentlich mehr als in Deutschland, wo mMn nach dem beschlossenen Atom(energie)ausstieg eine Menge Dampf aus dem Kessel gelassen wurde.

sticker

Anti-Spionage-Sticker der koreanischen Atomenergiebehörde

Dies war wahrscheinlich auch einer der Gründe für die wirklich erhöhten Sicherheitsrichtlinien, die wir für den Besuch über uns ergehen lassen mussten. Eine vorherige Akkreditierung mit Backgroundcheck war genauso nötig wie ein Überkleben aller Handykameras mit entsprechenden Stickern und das in dem Land, in dem gefühlt jeder Kühlschrank über ein Touchpad mit WLAN und Kamerafunktion verfügt. Die Chinesen waren da bei unserem Besuch ein halbes Jahr vorher wesentlich entspannter – hmm, so what.

Ich fürchte, mit dem Land Korea werde ich nicht so wirklich warm. Die Dichte an amerikanischen Fastfoodläden von McDonalds über Starbucks bis hin zu PizzaHut ist gefühlt größer als in Miami und Bier und Chicken (im KFC-Style) als aktuell beliebtestes Essen ist auch nichts, mit dem ich mich wirklich anfreunden kann… oder für das ich zumindest nicht um die halbe Welt reisen muss. An den wenigen Abenden, an denen wir nicht auf der Konferenz versorgt wurden, haben wir zwar schon traditionell Koreanisch gegessen (in den entsprechenden Restaurants, wo wir die einzigen Ausländern waren), aber besser (oder exotischer) als im Bulgogi Haus in Köln-Weidenpesch war das jetzt auch nicht. Das selbstgemachte Kimchi, das ich hier in meinem Kühlschrank habe, ist genauso gut wie das in Korea und der einzige Unterschied ist offensichtlich, dass ich es zuhause nicht mit der Schere schneide.

Ich habe noch in einem koreanischen Brautmodengeschäft einen Gat (traditioneller dummer Hut) gekauft, den dann aber leider im Hochgeschwindigkeitszug nach Seoul (die echt überall auf der Welt besser sind als in Deutschland) liegen lassen. Die Herausforderung mit dem Reiskocher habe ich lieber direkt sein gelassen und versuche mein Glück dann wohl lieber in Japan, wenn bzw. falls ich da noch mal hinkomme.

Gerade war ich in Japan bei unseren Kollaborationspartnern am Forschungsinstitt RIKEN, um zu fragen, ob ich mir mal ihren Teilchenbeschleuniger ausleihen darf… Irgendwie scheint das ein regulärer Teil meiner Arbeit zu werden, bei fremden Leuten aufzutauche,n um mit großen Kulleraugen um Strahlzeit zu betteln. Naja, gibt Schlimmeres, aber fangen wir mal vorne an zu erzählen.

Also RIKEN ist ein Forschungszentrum – ganz ähnlich wie Jülich – das sich auf Kernphysik spezialisiert hat. Vor kurzem haben sie mit dem extrem starken Teilchenbeschleuniger dort das neue Element Nihonium gefunden… naja eigentlich haben sie (innerhalb von mehreren Jahren) “drei Ereignisse” nachgewiesen (also sie konnten insgesamt 3 Atome produzieren und messen), was unter Kernphysikern offensichtlich ausreicht, um ein neues Element zu entdecken.

Aber ich bin ja Festkörperphysiker und habe davon nur sehr wenig Ahnung und war deswegen auch gar nicht da. Ich war vor Ort, um mit der Neutronengruppe zusammenzuarbeiten und ihren kleinen Teilchenbeschleuniger samt Neutronenquelle zu benutzen. Diese Neutronenquelle, RANS (RIKEN Accelerator-driven Neutron Source), ist eigentlich genau das, was wir im HBS-Projekt in Deutschland auch für Universitäten bauen wollen. Teilchenbeschleuniger, Neutronentarget und Instrument sind zusammen nur ca. 15 Meter lang und ca. 2m breit. Trotzdem produzieren sie ca. 10^9 n/s, von denen 10^5 n/s an der Probe ankommen und genutzt werden können. Das reicht für spezialisierte Fragestellungen durchaus aus, um aktuelle Wissenschaft zu betreiben und genau dies wollen wir, wie schon öfter hier erwähnt, auch an deutschen Universitäten verbreiten.

Nun gehen an der Stelle unsere Absichten aber schon etwas auseinander. Wir in Jülich wollen immer präzisere Neutronenquellen bauen, so dass wir viel mehr Neutronen auf eine Probe fokussieren können. Die Leute von Riken allerdings wollen ihre Quelle mit dem Teilchenbeschleuniger sogar noch weiter verkleinern, um sie auf einen LKW bauen zu können. Denn falls so eine Quelle transportabel wird, dann könnte man sie benutzen um Brücken und ähnliche Betonkonstruktionen damit zu durchleuchten. Dies ist nämlich einer der weiteren großen Vorteile von Neutronen. Während Röntgenstrahlen – vor allem die von Laborquellen – nur wenige mm in Materialien eindringen können, so können Neutronenstrahlen ohne größere Probleme auch durch meterdicke Beton oder Stahlkonstruktionen hindurchgehen.

Konzept einer Neutronenquelle zum Durchleuchten von Brücken und ähnlichen Strukturen

Die Japaner haben nämlich ein Problem. Während des japanischen Wirtschaftswunders nach dem 2. Weltkrieg wurden sehr viele Brücken gebaut, die nun, nachdem die entsprechenden Jahrzehnte ins Land gegangen sind, Risse, Wassereinlagerungen und andere Schwachstellen bekommen. Dabei ist die Diagnose erstaunlich schwierig, denn Ultraschall und Röntgen kann man nur sehr lokal einsetzen und ansonsten kann man nur gucken, ob sich auf der Oberfläche irgendwelche Risse bilden. Daher hatte die Gruppe aus RIKEN eben die tolle Idee dafür Neutronenstrahlen einzusetzen, woran jetzt seit einigen Jahren gearbeitet wird.

Naja, langer Rede kurzer Sinn, ich darf gerne ihre Neutronenquelle für meine Versuche benutzen und muss jetzt nur noch meinen Chef davon überzeugen mich mit meinem ganzen Equipment um die halbe Erde zu karren… obwohl dort alles voll von aggressiven Rehen ist.

Nara_pres

Mein Votrag im japanischen Theater mit der neuesten Pyramide von Jacob Müller

Das ist dann auch schon direkt die Überleitung zu dem anderen Grund meiner Reise nach Japan: Eine Spezialistenkonferenz über Neutronenoptiken, oder kurz NOP. Die fand in Nara/Japan in einem malerischen Tempelbezirk mit japanischem Garten und besagten heiligen Rehen (eigentlich Sikahirsche s.u.) statt und beschäftigte sich nahezu ausschließlich mit der gezielten Extraktion und Verwendung von Neutronen. Kalte Neutronen haben nämlich einen riesigen Vorteil gegenüber thermischen Neutronen und vielen anderen Partikelstrahlen. Wenn ihre Energie abnimmt, dann bekommen sie gewisse Eigenschaften, die man sonst eher nur von sichtbarem Licht kennt wie z.B. die Totalreflektion. Neutronen kann man z.B. an einem Spiegel unter einem bestimmten Einfallswinkel spiegeln und wenn man nun einen Leiter aus solchen spiegelnden, beschichteten Glasflächen produziert, kann man Neutronen quasi wie bei Lichtwellenleitern und Glasfasern transportieren. Darüber hinaus kann man auch Sammellinsen einsetzen und die Neutronen polarisieren, aber das führt an dieser Stelle ein wenig zu weit. Unter anderem auch, weil diese Techniken wirklich die “leading edge” Technologie in der Neutronenphysik sind und sich da noch vieles erst etablieren muss, bevor ich hier sicher davon reden kann.

Kurz bevor wir nach Tokyo gefahren sind, haben es mein Kollege und ich es auch noch geschafft auf den Fujisan, Japans höchsten (Vulkan)Berg, zu klettern. Wir haben den Aufstieg am ersten Tag der Saison gewagt, als der Weg gerade aufgemacht wurde und wurden dafür mit eisigen Temperaturen am Nullpunkt (in Tokyo 35°C), eisigen Winden und geschlossenen Schreinen belohnt 😉 . Aber es hat sich trotzdem sehr gelohnt und der Pilgerweg dort hinauf ist auf jeden Fall eine Erfahrung wert.

Als Deutscher habe ich mich in Japan auf jeden Fall sehr wohl gefühlt und auch (oder vor allem) auf Wissenschaftsebene haben wir dieselben Einstellungen. Ich hoffe sehr, dass wir auch in Zukunft unsere Zusammenarbeit wie geplant fortsetzen können und zusammen die brillianten Neutronenquellen der Zukunft für Jedermann bauen können

PS:

Eins
Zwei
Drei
Vier

„Wenn später mal viele neue Neutronenquellen auf Basis des HBS-Prinzips ihren Dienst in Europa aufgenommen haben, möchte ich, dass man sich an Unkel erinnert und sagt: ‚Hier hat alles angefangen.’…“

Damit eröffnete Prof. Brückel den ScienceCase Workshop in Unkel bei Bonn am Rhein und macht damit auch direkt den dritten Schritt um diese selbstgemachte Prophezeiung wahr werden zu lassen. Die ersten beiden Schritte wurden jeweils im Herbst 2016 und 2015 getan, als wir uns zum ersten Mal in dem malerischen Hotel am Fuße des Drachenfelses getroffen haben, um einen Vorschlag für die neue Art effektiver und günstiger Neutronenquellen zu machen (wie ich hier bereits berichtet habe).

Nun sind wir nach den ersten vorsichtigen Schritten auf totalem Neuland und den ganzen damit verbundenen Arbeiten, Experimenten und Simulationen an dem Punkt angekommen, an dem wir uns an die Geldgeber und Projektträger dort draußen richten um unseren Traum von Neutronenquellen für Jedermann wahr werden zu lassen. Dazu braucht es dann natürlich auch eine möglichst klar definierte Fragestellung von den besten Wissenschaftlern, die aktuell auf diesem Gebiet unterwegs sind, also einen ScienceCase.

Um genau diesen zu definieren hat das Jülich Center for Neutron Science Repräsentanten aus den Gebieten der Chemie, Festkörperphysik, Materialwissenschaften und LifeScience nach Unkel geladen, um dort zusammen zu erarbeiten, was die hochbrillanten Neutronenquellen leisten können und wie sie in Zukunft dazu beitragen können, die aktuellen Fragen der Wissenschaft anzugehen. Energie, biologische Proben und auch so exotische Sachen, wie Kunst & Kulturgegenstände stehen bei den Wissenschaftler extrem hoch im Kurs und warten nur darauf, mit den richtigen Neutroneninstrumenten im Detail studiert zu werden.

Schließlich waren wir es, die Teilnehmer des HBS-Projektes selber, die den Enthusiasmus der Wissenschaftler bremsen mussten. Ja, natürlich wollen wir so schnell wie möglich loslegen und die nächsten Neutronenquellen in Betrieb nehmen, natürlich wollen wir Instrumente bauen, die es in der Form bislang noch nicht gegeben hat… ABER selbst im optimistischsten Fall, wenn alles klappt, wenn die Finanzierung bewilligt wird, wird es immer noch Jahre dauern, bis die erste Probe eines Users im regulären Betrieb Neutronen sehen wird.
Aber natürlich arbeiten wir daran und können es selber gar nicht erwarten, den nächsten Schritt zu gehen… und dann den nächsten (von dem ich hier natürlich berichten werde), bis wir am Ende in Jülich wieder Neutronen für die Forschung haben werden.

“Wie sieht denn nun genau der Zeitplan aus?” ist nicht nur eine Frage, die wir von den potentiellen Usern am Wochenende oft gestellt bekommen haben, sondern auch dem ein oder anderen Leser wird sie auf der Zunge liegen. Nun ja, leider ist meine Antwort darauf hochgradig spekulativ. In der deutschen Neutronenstrategie wurde die Inbetriebnahme einer großen hochbrillianten Neutronenquelle in Jülich für das Jahr 2030 geplant und auf dem Weg dorthin wollen wir nach Möglichkeit einen Prototypen bauen, der nicht nur als Musterbeispiel für kleine “Universitätsquellen” dienen kann und zur Entwicklung und Erprobung der hochbrillianten Technik gebraucht wird, sondern auch schon in der Lage ist, selber einen Beitrag zu aktuellen wissenschaftlichen Fragestellungen zu liefern.

Ich halte euch hier auf jeden Fall auf dem laufenden und werde die aktuellsten Informationen mit euch teilen, schneller als jede Pressemitteilung. Ohne jetzt die Haut des Wildschweins zu verkaufen, bevor man es erlegt hat, könnte es zumindest in Teilen schon Mitte diesen Monats soweit sein, je nachdem, wie eine gewisse politische Entscheidung ausgeht, auf die wir hier aktuell (nebenbei) warten).

… ist zwar nicht so ganz einfach gefragt, wie ich es hier darstelle, aber allein die Tatsache, dass sowas möglich ist, spricht schon sehr deutlich für das Forschungszentrum und die damit verbundene hervorragende Forschungsinfrastruktur. Ganz konkret wollen wir im JCNS ja eine moderne, hoch brillante Neutronenquelle bauen, die die aktuelle Generation der Forschungsreaktoren ersetzen kann (wie ich ja schon mal öfter hier beschrieben habe). Aber um die einzelnen Komponenten zu testen und zu entwickeln, brauchen wir einen Teilchenbeschleuniger und leider haben wir (noch) keinen eigenen. Doch zum Glück gibt es ja (unter anderem) auf dem Gelände die Kollegen vom IKP, dem Institut für Kernphysik, und die haben den COSY und das Zyklotron “Julic”, das den COSY mit Protonen und Deuteronen versorgt, den ich mir mal kurz ausleihen könnte.

Dabei heißt “Ausleihen” bei einem sauteuren Großgerät, das aus Steuergeldern bezahlt wird und von einem Experten-Team betrieben werden muss, natürlich eines … Proposal schreiben.

Das geht nun folgendermaßen: Zu bestimmten Zeitpunkten kann man sich für Strahlzeit bewerben und einen Vorschlag machen, welche wissenschaftliche Fragestellung man untersuchen will. Dies stellt man dann auf mehreren A4 Seiten möglichst genau dar und beschreibt auch den Experimentaufbau, welche Unterstützung (und welches Material) man von dem IKP benötigt und welche Erfahrungen und Vorarbeiten man bislang schon gemacht hat (denn die Betreiben haben natürlich dafür Sorge zu tragen, dass auch nur machbare und erfolgversprechende Experimente angenommen werden und in den Genuss kostbarer Strahlzeit kommen).

Dann setzt sich eine Expertenkommission aus unabhängigen Wissenschaftlern zusammen und bewertet die vorgeschlagenen und eingereichten Experimente nach Machbarkeit, wissenschaftlichem Nutzen, Risiko etc. pp.. Falls es nun mehr Proposals als Strahlzeit (in der entsprechenden Zeitperiode) gibt (was eigentlich immer der Fall ist), dann wird ein Ranking vorgenommen und manche Proposals werden akzeptiert und andere abgelehnt. Soweit so normal und so (oder so ähnlich) läuft das ganze auch bei anderen Großprojekten ab, wie bei den Supercomputern oder unseren Neutronenstreuinstrumenten am MLZ, ILL und der SNS.

Die Neuerung für mich ist nun, dass bei der entsprechend genehmigten Strahlzeit der gesamte Beschleuniger nur für ein einziges Experiment arbeitet. Während bei uns der Forschungsreaktor einfach während eines Zyklus 24/7 läuft und 30 (je nach Quelle) Instrumente mit den entsprechenden Teilchen versorgt, läuft hier das ganze Ding nur für mich (oder meinen Kollegen *g*) und dementsprechend hoch ist auch die Verantwortung mit der Strahlzeit sinnvoll umzugehen.

Der Betrieb solcher Großgeräte (Teilchenbeschleuniger, Neutronenquellen oder auch Teleskope) ist eine fundamentale Aufgabe der deutschen Forschungszentren und -organisationen, wie zum Beispiel den Max-Planck oder Fraunhofer Instituten oder eben auch den Helmholtz Zentren und damit dem Forschungszentrum Jülich. Denn für den Betrieb braucht es nicht nur die extrem teuren Geräte selber und Expertenteams, die sie bedienen können, sondern eben auch die entsprechende Infrastruktur wie Werkstätten, Gas/Luft-Rückverflüssiger etc. pp. und das ist viel zu viel Aufwand für eine Universität (wo in Deutschland ja der Großteil der Forschung stattfindet), um diese Größe an Logistik bereitzustellen.

2006 wurde in Jülich der Forschungsreaktor FRJ-2 “DIDO” abgeschaltet und rückgebaut, der bis dahin als Neutronenquelle für die Festkörperphysiker, Biologen und Chemiker Neutronen zur Verfügung gestellt hat. Dadurch hatte Jülich ein Großgerät weniger, das es der Forschungslandschaft zur Verfügung stellen konnte. Aber zum Glück ist eines dieser Großgeräte, die noch da sind, der Teilchenbeschleuniger “Julic” bzw. COSY und wenn meine Kollegen und ich unseren Job richtig machen, dann haben wir hoffentlich auch bald wieder ein neues Großgerät hier in Jülich, unsere geliebte HBS-Neutronenquelle.