Arriving at the airport in Tokyo, I immediately realize that I’m embarking on an extraordinary journey. The staff, who is stationed at every corner in June 2022 due to the coronavirus, guides me through the huge airport to my destination in what feels like a mere 15 minutes. All the while news about the staff shortage chaos at German airports keeps appearing on my smartphone. Many things are simply different here. What particularly impresses me about Japan is how it brings together in harmony the contradictions that can be found everywhere: yes, it is a country of tradition with firm structures and a tangible order everywhere. At the same time, Japan is bursting with impressive modernity, advanced technology and pure chaos! Whenever I leave the rather tranquil Wako for Tokyo, I soon find myself exhausted, trying to find my way through the crowds in the metro stations, or feel lost among the skyscrapers. Just a few steps further, however, I find myself in enchanting tranquil temples or gardens where I can regain my breath and clear my mind. This is absolutely fascinating!

In 2022 Paul Zakalek from the Jülich Institute for Quantum Materials and Collective Phenomena (JCNS-2 / PGI-4) spent six months researching the possibility of depth-resolved chemical analysis with neutrons as part of a fellowship at the RIKEN Institute in Wako, Japan. Since then, the 38-year-old neutron researcher is working on the development of a highly brilliant neutron source in Jülich. In this blog post, he recalls his time in Japan.

Interview by Laura Hofschlag originally published at JOBVERDE

Forschungszentrum Jülich has been dealing with solving social issues and the challenges of our time since it was founded in 1956. The mission of over 7,000 members of staff is to shape change – especially in the research fields of information, bioeconomy and energy. The staff at Forschungszentrum Jülich also include many female scientists. This is still not a matter of course. A survey by the Federal Statistical Office from 2019 shows that the EU average for female scientists in companies only amounted to 21 percent. Why is the proportion of women so low, what do prejudices have to do with this and how will their role develop in the future?

These are questions that Sabrina Schwarz from the Equal Opportunities Bureau can answer. In the following interviews Yulia Arinicheva also reveals what everyday work at Forschungszentrum Jülich actually looks like. Yulia obtained her doctorate at the Institute for Safety Research and Reactor Technology and is currently occupied with solid state batteries.

Read more

Pure studies are simply too theoretical for many people. This is also how Marie felt. Back when she chose her bachelor course, she opted for a dual study programme for applied mathematics and computer science at the Aachen University of Applied Sciences, which included vocational training as a technical software developer at Forschungszentrum Jülich. But it didn’t stop there: she liked the combination of theory and practice so much that she started a position as software developer at the Institute of Energy and Climate Research in addition to her master’s studies. There she is busy gathering data for her current project and investigating how energy management can be made as efficient as possible on the campus of the research centre.

Read more

von Imke Rhoden and Andrew Ross

The European Union is challenged with increasing global consumption, growing pressure on resources as well as the uncertainty of critical raw materials. Coupled with the goal to become the world’s first climate-neutral continent by 2050 there is an urgent need to decouple economic growth from resource use and to ensure a swift transition to circular solutions.

Read more

Text by Prof. Dirk Pleiter, research group leader at the Jülich Supercomputing Centre (JSC) and professor of theoretical physics at the University of Regensburg.

Prof. Dirk Pleiter Bild: FZJ

Being a person, who had the opportunity of being involved in the design of special-purpose processors, any new process architecture for high-performance computing (HPC) is fascinating. As of today the market for server processors, which can also be used for supercomputers, is dominated by a single architecture, namely the x86 architecture, for which solutions are provided mainly by Intel but also AMD. For supercomputers becoming more powerful in the future, more competition for better (and cheaper) solutions is needed. The situation is already changing: The new pre-exascale computer Summit, which has been deployed in the US and is currently the world’s fastest supercomputer according to the Top500 list, uses an alternative processor from IBM based on the POWER architecture. In Europe, where the European Commission is about to fund the development of a European server processor, the focus is on the ARM processors, i.e. yet another alternative architecture.

Whether new architectures making it to supercomputers is not only a question of technical excellence. New products also have to find a market that is sufficiently large. Only by selling a large number of processor, new money becomes available to develop the next generation of the product. A supplier for the vastly evolving HPC market needs to be able to provide new, innovative products within a few years.

As a scientist, I have not experience in business development, but I can nevertheless help to help companies to cooperate on developing a market for ARM-based products. The result is the “Open Edge and HPC Initiative”, which finally went public today.

More information


Prof. Dr. Dirk Pleiter is research group leader at the Jülich Supercomputing Centre (JSC) and professor of theoretical physics at the University of Regensburg. At JSC he is leading the work on application oriented technology development. He has played a leading role in several projects for developing massively-parallel special purpose computers, including QPACE.

 

Forschungszentrum Jülich is mourning the passing of Professor Peter Grünberg. The Nobel laureate in physics and scientist of Forschungszentrum Jülich passed away last week in Jülich at the age of 78.

Peter Grünberg.

Peter Grünberg (1939 – 2018)
Copyright: Forschungszentrum Jülich

“The news of Peter Grünberg’s passing has filled all of us at Forschungszentrum Jülich with great sadness. Our thoughts are with his family. We have lost an outstanding scientist who set standards worldwide in the field of solid state research. It is no exaggeration to say that Peter Grünberg and his discovery of the giant magnetoresistance effect have dramatically changed all our lives. Without him, modern computers and smartphones as we know them today would be inconceivable. Peter Grünberg was not only an excellent researcher, but above all an esteemed and all-round popular colleague. He remained loyal to Jülich for more than 45 years and we will miss him greatly. Forschungszentrum Jülich will honour his memory, not least through the institute bearing his name – the Peter Grünberg Institute,” said Professor Wolfgang Marquardt, Jülich’s Chairman of the Board of Directors, in a tribute to the Nobel laureate.

We would like to give you the opportunity to share your memories of Peter Grünberg and to offer your condolences on this page.

Please do so by posting a comment.
Please note that your entry might not show on the page at once due to our web policy.

Please also visit the German version of this page if you wish to see what previous visitors have contributed.

Interview with Dr. Sarah Genon on a new approach to discover “operational functions” of brain areas

Seeing doesn’t necessarily mean understanding. This brief notion is perhaps the best way of describing the problem that drives many researchers in the field of neuroscience. When imaging techniques such as functional magnetic resonance imaging emerged in the 1990s, it appeared to be just a matter of time until we understood how speech is processed, sentences formed, and recollections stored in our short- and long-term memories. However, the current estimations of many scientists paint a much more sober picture. To date, hardly any concept from the fields of psychology, philosophy, or sociology can be clearly assigned to biological processes and structures in the brain.

Sarah Genon Quelle: privat

Neuroscientist Dr. Sarah Genon, who conducts research at Forschungszentrum Jülich and University Hospital Düsseldorf, even speaks of a “conceptual chaos”. Within the European Human Brain Project, she heads a subproject concerned with the multimodal comparison of brain maps. Together with Prof. Simon Eickhoff, Prof. Katrin Amunts and other neuroscientists from Forschungszentrum Jülich and University Hospital Düsseldorf, Genon is proposing a new approach that could enable the analysis of large data sets and help to considerably further this area of research in the long run.

Read more

Be it in its role as a natural UV absorbent, climate gas, or health factor – the ozone concentration in the atmosphere is of interest to society for various reasons. For decades, global measuring programmes have investigated how the ozone content changes due to human influence. Ozone sondes attached to weather balloons, which can reach altitudes of 35 km, are still an indispensable source of data. Forschungszentrum Jülich plays an important role in this context: since 1996, it has been running the World Calibration Center for Ozone Sondes (WCCOS). In early November, calibration measurements for the NASA-headed SHADOZ network took place here.

Read more

Text and pictures by Andreas Herten

Last week, we hosted the first GPU Hackathon of 2017. It was a super intense week full of programming and discussing. It was great coding fun!

The GPU Hackathons (at times also OpenACC Hackathons) are workshop-like events happening around the world. Five of them are planned in 2017 – and the first one was at Jülich Supercomputing Centre last week. Organization is coordinated by Fernanda Foertter from Oak Ridge National Laboratory, who also joins the Hackathons to guide through the week.

Read more

By Igor Dal Bo

I was very excited when I discovered that I was to go from Jülich to Chile for my research. And here I am! I feel privileged at having the opportunity to work surrounded by this amazing natural environment, especially as I have been travelling a lot since I have been here. That’s necessary anyway, since I’m collecting data in four national parks for my research. From the Atacama Desert to the monkey puzzle trees in Nahuelbuta’s pristine forests, the landscape changes at every turn.

Igor Dal Bo und eine Chilenische Empanada

Igor Dal Bo with a Chilean empanada Quelle: privat

And what is better after a long work day than enjoying a typical Chilean empanada – a special type of stuffed bread – sitting on the seaside admiring the sunset while listening to the relaxing sound of the ocean waves crashing on the shore? If I get the chance to pay Chile another visit, I will definitely go for it!

 

Details

Igor Dal Bo is a Doctoral researcher at the Institute of Bio- and Geosciences, Agrosphere (IBG-3). He has been spending five weeks in Chile working within the German-Chilean research initiative “Earthshape”, funded as a priority research programme by the German Research Foundation (DFG). He is investigating weathering profiles using geophysical methods like GPR, EMI, and ERT, aiming to correlate them with geochemical proxies.

Text and pictures by Andreas Herten

aherten-img-sc_logoFrom Friday, 11 November, until Saturday, 19 November, I traveled to Salt Lake City for the Supercomputing Conference (fully: the international conference of high performance computing, networking, storage and analysis, but everyone either calls it the Supercomputing or even only SC16). SC is the largest conference for all things supercomputing (and then some). Every year, it is held in a different city in USA. About 12 000 people visit the conference each year1 – and Jülich Supercomputing Centre (JSC) does so as well.

Actually, Jülich’s involvement is two-fold (at least).

aherten-img-booth_panorama

 

First off, JSC always has a booth on the exhibits floor. The floor hosts a large exhibition in which different vendors from industry, universities, academic institutions, and other supercomputing-related projects showcase their offerings. Being a long-time attendee and one of the largest supercomputing centres in Europe, JSC has quite a prominent booth, which it shares with RWTH Aachen and the DEEP project this year. We present our supercomputing systems, current research and projects, and tools we develop. For instance LLview, a tool to visualize the load of our supercomputers. Also, our new Human Brain Project PCP systems have a display wall.

Read more

Sissi, palaces, the Danube – oh, Vienna is that and much more! For example, the city is full of musicians and artists. I often hear the stirring melodies of famous classical composers when I stroll through the city. I also love taking the classic red trams with their chiming bells, surrounded by the many modern buildings. In doing so, I’ve stumbled across a gorgeous waste incineration plant that the Austrian artist Friedensreich Hundertwasser designed to look like an oriental fantasy castle. Here, I can really feel the mixing of history with the modern life of the city.

Read more

Quantum mechanics is one of the central pillars of modern physics. This mathematically complex theory which allows the properties and laws of matter to be described is, however, rather to understand intuitively. Generations of young scientists have approached this difficult concept with the help of double-slit experiments that clearly demonstrate wave – particle duality. Two new videos from the Jülich Centre for Neutron Science (JCNS) offer a practical alternative to this.

The videos clarify fundamental aspects of quantum mechanics using neutron scattering experiments from research undertaken at the Jülich institute. The videos are around 5 and 4 minutes in length respectively, and are appropriate for use in an introductory lecture course in quantum mechanics or for self-study purposes.

Video 1: quantization, quantum phase transitions and scattering at lattices

YouTube

Mit dem Laden des Videos akzeptieren Sie die Datenschutzerklärung von YouTube.
Mehr erfahren

Video laden

Quelle: Forschungszentrum Jülich/TRICKLABOR

Read more

We invite former doctoral students to write a blog post about their dissertation and their time at Forschungszentrum Jülich. Today, we are pleased to present a guest contribution by Dr. Siaufung Dang. #MyPhD

BildIn my PhD thesis I have focused on ab initio calculations to derive key properties of intercalation compounds for lithium ion batteries. In this respect I have been working on LixCoO2 and LixMg2Si which are both solid solutions within a defined compositional range. Key properties include the intercalation voltage, structural features and thermodynamic properties.

Battery technology penetrating many areas of industry and everyday life is a field with great impact on the development and the sustainability of our society. However, ab initio methods still belong to a field dominated by theorists and should be promoted to be more accepted in applied sciences. The employment of ab initio calculations in an “intelligent materials design” fashion is expected to continuously gain importance in the next years and decades. Therefore, it is imperative not to miss the point of opportunity to reinforce the activities regarding the utilization of ab initio methods on real materials in high-tech applications such as batteries.

Read more

Jülich Blogs is the blog platform of Forschungszentrum Jülich, one of the largest research centres in Europe. In addition to the company website, which provides information in a neutral manner at www.fz-juelich.de, our blog entries are full of colourful and enthusiastic first-hand information: scientists, PhD students, and employees of Forschungszentrum Jülich write about their work as well as challenges and successes in their laboratories, and grant personal insights to Jülich research.

Read more